Answer:
x=6 . m<PQS=82 m<SQR=61 :)
Step-by-step explanation:
(13x+4) + (10x-1) = 141
combine like terms
23x+3=141
subtract 3 from both sides
23x=138
divide both sides by 23
x=6
substitute x into both original equations
m<PQS=13(6)+4
m<PQS=78+4
m<PQS= 82
m<SQR=10(6)+1
m<SQR=60+1
M<SQR=61
Answer:
a solution is 1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Step-by-step explanation:
for the equation
(1 + x⁴) dy + x*(1 + 4y²) dx = 0
(1 + x⁴) dy = - x*(1 + 4y²) dx
[1/(1 + 4y²)] dy = [-x/(1 + x⁴)] dx
∫[1/(1 + 4y²)] dy = ∫[-x/(1 + x⁴)] dx
now to solve each integral
I₁= ∫[1/(1 + 4y²)] dy = 1/2 *tan⁻¹ (2*y) + C₁
I₂= ∫[-x/(1 + x⁴)] dx
for u= x² → du=x*dx
I₂= ∫[-x/(1 + x⁴)] dx = -∫[1/(1 + u² )] du = - tan⁻¹ (u) +C₂ = - tan⁻¹ (x²) +C₂
then
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) +C
for y(x=1) = 0
1/2 *tan⁻¹ (2*0) = - tan⁻¹ (1²) +C
since tan⁻¹ (1²) for π/4+ π*N and tan⁻¹ (0) for π*N , we will choose for simplicity N=0 . hen an explicit solution would be
1/2 * 0 = - π/4 + C
C= π/4
therefore
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Answer:
Y = x + 3/1
Step-by-step explanation:
Hey there!
To find a solution that would satisfy the value of x, the first thing you must do is to first solve for x. To solve x-7=35, you must add 7 to both sides to isolate x. This should result in x=42.
When you look at the answer choices given, notice that choice C is the solution for x, 42.
Therefore, your answer would be C. 42.
To check if this is correct, you can plug 42 back into the equation x-7=35 to see if you get a true statement:
42-7=35
35=35
Hope this helps!