1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
3 years ago
6

I WILL MARK YOU BRAINLYEST if you answer all of my problems !!!!!!!!!!!

Mathematics
1 answer:
Romashka [77]3 years ago
8 0

First, let's convert each line to slope-intercept form to better see the slopes.

Isolate the y variable for each equation.

2x + 6y = -12

Subtract 2x from both sides.

6y = -12 - 2x

Divide both sides by 6.

y = -2 - 1/3x

Rearrange.

y = -1/3x - 2


Line b:

2y = 3x - 10

Divide both sides by 2.

y = 1.5x - 5


Line c:

3x - 2y = -4

Add 2y to both sides.

3x = -4 + 2y

Add 4 to both sides.

2y = 3x + 4

Divide both sides by 2.

y = 1.5x + 2


Now, let's compare our new equations:

Line a: y = -1/3x - 2

Line b: y = 1.5x - 5

Line c: y = 1.5x + 2

Now, the rule for parallel and perpendicular lines is as follows:

For two lines to be parallel, they must have equal slopes.

For two lines to be perpendicular, one must have the negative reciprocal of the other.

In this case, line b and c are parallel, and they have the same slope, but different y-intercepts.

However, none of the lines are perpendicular, as -1/3x is not the negative reciprocal of 1.5x, or 3/2x.

<h3><u>B and C are parallel, no perpendicular lines.</u></h3>
You might be interested in
Find the product of the monomial and the polynomial. 4a^2b^3*(9a^4b^2-4a^2+3)
Artemon [7]

Answer:

Step-by-step explanation:

4a² b³ * (9a⁴b² - 4a² + 3) = 4a²b³ * 9a⁴b² - 4a²b³*4a² + 4a²b³*3

                                        = 36a²⁺⁴ b³⁺²  -16a²⁺²b³ + 12a²b³

                                         = 36a⁶b⁵ - 16a⁴b³ + 12a²b³

6 0
3 years ago
Find the equation of the line that has a slope of 5 and passes through the point (-9,6)
Aleks [24]

Answer:

y-6=5(x-(-9))

Step-by-step explanation:

y=5x+51 if u need y=mx+b. Plug and chug basically

5 0
3 years ago
consider this quadratic equation x2+2x+7=21 the nuber of positive solutions to this equation are blank. the approximate value of
S_A_V [24]

Answer:

<em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>7</u></em><em><u>-</u></em><em><u>2</u></em><em><u>1</u></em><em><u>=</u></em><em><u>0</u></em>

<em><u> </u></em><em><u> </u></em><em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>-</u></em><em><u>1</u></em><em><u>4</u></em><em><u>. </u></em><em><u> </u></em><em><u>=</u></em><em><u>0</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>. </u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>4</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>1</u></em><em><u>. </u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>4</u></em><em><u>+</u></em><em><u>1</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>(</u></em><em><u>X+</u></em><em><u>1</u></em><em><u>)</u></em><em><u>²</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>5</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>X+</u></em><em><u>1</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>+</u></em><em><u>/</u></em><em><u>-</u></em><em><u>√</u></em><em><u>1</u></em><em><u>5</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>X=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>+</u></em><em><u>/</u></em><em><u>-</u></em><em><u>√</u></em><em><u>1</u></em><em><u>5</u></em>

<em><u>X=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>+</u></em><em><u>3.872983346207</u></em>

<em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>2.872983346207</u></em><em><u>(</u></em><em><u>greate</u></em><em><u>st</u></em><em><u> </u></em><em><u>sol</u></em><em><u>ution</u></em><em><u>)</u></em><em><u> round</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>possible</u></em>

<em><u>X=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>-</u></em><em><u>3.872983346207</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>-</u></em><em><u>4.872983346207</u></em>

6 0
3 years ago
Plz help me how would you solve 4x + 2y = 18, 3x - 5y =20 by elemination
Natalka [10]

Answer: x = 5, y = -1

<u>Step-by-step explanation:</u>

Equation 1: 4x + 2y = 18

Equation 2: 3x - 5y = 20

In order to eliminate one of the variables , find the LCM of either x or y.

<em>I chose to eliminate y.</em>  The LCM of 2 & 5 is 10.

Multiply the entire equation so the coefficient of the variable equals the LCM.

Then add the equations and solve for the remaining variable.

5(4x + 2y = 18)       -->        20x + 10y = 90

2(3x - 5y = 20)      -->        <u>   6x  - 10y</u> = <u>40 </u>

                                           26x          = 130  

                                         <u> ÷26         </u>    <u>÷26 </u>

                                                x         =  5

Next, input x = 5 into either of the equations to solve for y.

Equation 1: 4x + 2y = 18

                 4(5) + 2y = 18

                  20  + 2y = 18

                <u> -20          </u>  <u>-20 </u>

                           2y = -2

                         <u> ÷2  </u>  <u> ÷2 </u>

                             y = -1

8 0
3 years ago
What is the solution to the inequality -2(m+3)&lt;4​
diamong [38]

Answer:

m>−5

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Evaluate the expression for the given value of the variable |-4b-8|+|-1-b^3|+2b^3;b=-2
    13·2 answers
  • If f(x) = 1 – x, which value is equivalent to |f(i)|?<br> 0<br> 1<br> √2<br> √-1
    13·1 answer
  • PLEASE HELP! PLEASE HELP! PLEASE HELP
    11·1 answer
  • Please help me, thank you so much! :)
    13·1 answer
  • Find KL round to nearest tenth
    15·1 answer
  • Express an order pair the fact a 16 line ad cost $50
    7·1 answer
  • Rosa's monthly mortgage payment was $1400 last year, and on average, 8%
    13·1 answer
  • YA'LL ARE SMART!!! PLEASE HELP!!!
    9·1 answer
  • Find the difference.<br> (−2g+7)−(g+11) =
    13·2 answers
  • Use the substitution method to solve the linear system.<br> 4×- 7y = 20<br> X- 3y = 10
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!