Answer:
Choice D. 15.2%
Step-by-step explanation:
We have a normal...
mean u = 48
standard deviation s = 2
We want P(43 < X < 46)
We standardize.
Consider P(43 < X) = P( (43 - 48)/2 < Z) = P(-2.5 < Z)
P( X < 46) = P( Z < (46 - 48)/2 ) = P(Z < -1)
We want P( -2.5 < Z < -1)
Look at Z-scores.
P( Z < -2.5) = 0.0062
P(Z < -1) = 0.1587
so P(-2.5 < Z < -1) = P(Z < -1) - P(Z < -2.5) = 0.1587 - 0.0062 = 0.1525 = 15.2%
about
7,14,21,28,35,42,49,56,63,70
18,36,54,72,90,108,126,144,162,180
Answer: Im struggling to understand this one and im in highschool my brain is melting.
25
What are the x values of the table?
.96 or .97