B: x = 5.5 or -5.5
(square root) -> 2x = 11
(divide by 2) -> x = 5.5 or -5.5
Answer:
2(2-10)/3=x
Step-by-step explanation:
2(2-10)=3x
2(2-10)/3=x
Answer:
Step-by-step explanation:
To find median and mode for
a) In a uniform distribution median would be
(a+b)/2 and mode = any value
b) X is N
we know that in a normal bell shaped curve, mean = median = mode
Hence mode = median = 
c) Exponential with parameter lambda
Median = 
Mode =0
D is halfway between A and B
so the coordinates of D are (2,2)
E is halfway between A and C so the coordinates of E are (-1,1)
now you need to find the gradient/slope of DE and BC using the formula:

<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>D</u><u>E</u><u>:</u><u> </u></h3>
SUB IN COORDINATES OF D AND E

therefore the gradient of DE is 1/3.
<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>B</u><u>C</u><u>:</u></h3>
<em>S</em><em>U</em><em>B</em><em> </em><em>I</em><em>N</em><em> </em><em>C</em><em>O</em><em>O</em><em>R</em><em>D</em><em>I</em><em>N</em><em>A</em><em>T</em><em>E</em><em>S</em><em> </em><em>O</em><em>F</em><em> </em><em>B</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>C</em>
<em>
</em>
therefore the gradient of BC is -2/-6 which simplifies to 1/3.
<h3>
therefore, BC and DE are parallel as they both have a gradient/slope of 1/3 and parallel lines have the same gradient</h3>