Answer:
No; the graph fails the vertical line test.
The vertical line test is a tool used to determine if we have a function. If we can draw a single straight vertical line through more than one point on the red curve, then the graph is said to have failed the vertical line test. Consequently, this leads to the relation not being a function.
For this circle graph, we can draw a vertical line through more than one point, which is why we don't have a function here.
Put another way, there are inputs (x) that produce more than one output (y), so that's why we don't have a function.
-BBBM
Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy



Put the value into the formula




Hence, The minimum speed when she leave the ground is 6.10 m/s.
4 is the difference sorry if i got it wrong :( :(