Answer:
c. Ductus venosus, vena cava, heart, ductus arteriosus, arteries
Explanation:
The circulatory system consists of the heart and blood vessels. In a fetus, the circulation of blood is different from circulation after delivery largely due to the fact that the lungs are not in use, rather, the fetus obtains oxygen and nutrients from the mother through the placenta and the umbilical cord.
Blood from the placenta is carried to the fetus by the umbilical vein. While some of this blood enters the fetal ductus venosus and is carried to the inferior vena cava, some others enter the liver. The blood from the inferior vena cava then moves into the right atrium of the heart. The foramen ovale, an opening between the right and left atrium in the fetus directs most of the blood flow from the right into the left atrium, thereby, bypassing pulmonary circulation. Most of the blood from the right atrium flows into the left ventricle and is pumped through the aorta to the rest of the body.
Some of the blood from the right atrium however, enters into the right ventricle and is pumped into the pulmonary artery. The ductus arteriosus which is a special connection between the pulmonary artery and the aorta in a fetus, directs most of this blood away from the lungs and into the arteries.
Answer:
Theoretical yield of tungsten produced = 35.6836915592 ≈ 35. 68 g
Explanation:
The chemical equation can be expressed as follows;
WO3 (s) + 3H2(g) → W(s) + 3 H20(g)
Note that the equation is already balanced.
Molecular Mass of WO3= 183.84 + 15.999 × 3 = 183.84 + 47.997 = 231.837 g
From the equation 1 mole of WO3 reacts with 3 mole of hydrogen molecule.
Molecular mass of tungsten(W) = 183.84 g
1 mole of tungsten was produced from the chemical equation.
WO3 (s) + 3H2(g) → W(s) + 3 H20(g)
From the equation,
231. 837 g of WO3 produces 183.84 g of tungsten
45.0 g of WO3 will produce ?
grams of tungsten produced = 183.84 × 45 /231.837
grams of tungsten produced = 8272.8
/231.837
Theoretical yield of tungsten produced = 35.6836915592 ≈ 35. 68 g
Answer:
The mass of hydrogen is conserved during cellular respiration as it follows the Law of Conservation of Matter. This shows that hydrogen has been conserved throughout the entire process (H representing Hydrogen) as the product has the same amount of hydrogen as the reactants.
The AMOUNT of carbon-dioxide atoms released by respiration are EXACTLY EQUAL to the atoms of these materials contained in the oxygen and carbon converted. In this way respiration has conserved the mass or material and in this way followed the law of conservation of mass.
Explanation: