Answer:
16,17,18,19
Step-by-step explanation:
one guy guessed. probably using a calculator
another guy took the 4th root of 100,000 and rounded down a number
(a third way started like this
n*(n+1)*(n+2)(n+3)=100000
Answer:
1/3 =0.33
Step-by-step explanation:
<em>ju</em><em>st</em><em> </em><em>subst</em><em>itute</em><em> </em><em>the</em><em> </em><em>va</em><em>lues</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>and </em><em>y</em><em> </em><em>int</em><em>o</em><em> </em><em>th</em><em>e</em><em> </em><em>exp</em><em>ression</em><em> </em><em>to</em><em> </em><em>get</em>
<em>4</em><em>(</em><em>2</em><em>)</em><em>+</em><em>1</em><em> </em><em>/</em><em>3</em><em>(</em><em>3</em><em>)</em><em>^</em><em>2</em>
<em>=</em><em>8</em><em>+</em><em>1</em><em> </em><em>/</em><em>3</em><em>×</em><em>9</em>
<em>=</em><em>9</em><em>/</em><em>2</em><em>7</em>
<em>=</em><em>1</em><em>/</em><em>3</em>
<em>=</em>0.33
Twenty-one thousand and sixty-three divided by three is 7021
First, take any number (for this example it will be 492) and add together each digit in the number (4+9+2 = 15). Then take that sum (15) and determine if it is divisible by 3. The original number is divisible by 3 (or 9) if and only if the sum of its digits is divisible by 3 (or 9).If a number is a multiplication of 3 consecutive numbers then that number is always divisible by 3. This is useful for when the number takes the form of (n * (n - 1)*(n + 1))Example: 492 (The original number). 4 + 9 + 2 = 15 (Add each individual digit together). 15 is divisible by 3 at which point we can stop. Alternatively we can continue using the same method if the number is still too large: 1 + 5 = 6 (Add each individual digit together). 6 ÷ 3 = 2 (Check to see if the number received is divisible by 3). 492 ÷ 3 = 164 (If the number obtained by using the rule is divisible by 3, then the whole number is divisible by 3)
0, the slope and y-intercept is 0