De acuerdo con un sistema de ecuaciones, tiene-se que los números son 31 y 84.
----------------
- En el sistema de ecuaciones, tiene-se que los números son x e y.
- Suma de 115, o sea,

- <u>El número mayor es dos veces más 22 unidades que el otro</u>, o sea,

----------------
Primero se encuenta el número menor, <u>reemplazando la segunda ecuación en la primera:</u>





----------------
El número mayor es dado en <u>función de el menor</u>, o sea:

Los números son 31 y 84.
Otro problema resuelto por sistema de ecuaciones es dado en brainly.com/question/24637096
Using the diagonal dimension and the height we can solve for the diameter of the cylinder using the Pythagorean theorem.
x^2 + 9.5^2 = 19.3^2
x^2 + 90.25 = 372.49
x^2 = 372.49 - 90.25
x^2 = 282.24
x = √282.24
x = 16.8
Now we know the diamteer and height, we can calculate the volume using the formula V = pi * r^2 * h
r = 1/2 the diameter = 16.8/2 = 8.4
using 3.14 for pi
Volume = 3.14 * 8.4^2 * 9.5
V = 3.14 * 70.56 * 9.5
v = 3.14 * 670.32
v = 2104.8 cubic meters
5,000 × 3.8%= 19,000×18= 342,000 × 40 = 13,680,000
Answer: The distance between the girls is 362.8 meters.
Step-by-step explanation:
So we have two triangle rectangles that have a cathetus in common, with a length of 160 meters.
The adjacent angle to this cathetus is 40° for Anna, then the opposite cathetus (the distance between Anna and the tower) can be obtained with the relationship:
Tan(A) = opposite cath/adjacent cath.
Tan(40°) = X/160m
Tan(40°)*160m = 134.3 m
Now, we can do the same thing for Veronica, but in this case the angle adjacent to the tower is 55°
So we have:
Tan(55°) = X/160m
Tan(55°)*160m = X = 228.5 m
And we know that the girls are in opposite sides of the tower, so the distance between the girls is equal to the sum of the distance between each girl and the tower, then the distance between the girls is:
Dist = 228.5m + 134.3m = 362.8m
I’m pretty sure your counting by 3’s because It’s goes 9,3 . However it might be in the negatives