B. Between 20 and 25 minuets
Brooke's speed is decreasing between 20 and 25 minutes. According to the graph Brooke's speed is decreasing during that time period.
Answer:
69.14% probability that the diameter of a selected bearing is greater than 84 millimeters
Step-by-step explanation:
According to the Question,
Given That, The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters.
- In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σ
we have μ=87 , σ=6 & X=84
- Find the probability that the diameter of a selected bearing is greater than 84 millimeters
This is 1 subtracted by the p-value of Z when X = 84.
So, Z = (84-87)/6
Z = -3/6
Z = -0.5 has a p-value of 0.30854.
⇒1 - 0.30854 = 0.69146
- 0.69146 = 69.14% probability that the diameter of a selected bearing is greater than 84 millimeters.
Note- (The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X)
Answer:
B. 25 degrees
Step-by-step explanation:
i think
Answer:
x = 7
y = 11
Step-by-step explanation:
Given the system;
y = 2x - 3
x + y = 18
1. Approach
The easiest way to solve this system of equations is to solve the second equation for the variable (y). Then add the systems, use algebra to solve for the value of (x), then substitute that value back into one of the original equations to solve for the value of (y). Another name for the method in use is the method of elimination, this is when a [erspm manipulates one of the equations in a system of the equation such that when they add the equations, one of the variables eliminatates. Thus, they can solve for the other variable and the backsolve for the value of the unknown variable.
2. Solve one of the equations for a variable
Manipulate the system such that each equation is solved for the same variable,
x + y = 18
Inverse operations,
x + y = 18
-18 -18
x + y - 18 = 0
-y -y
x - 18 = -y
3. Use elimination
Now substitute this back into the original system,
y = 2x - 3
-y = x - 18
Add the systems,
y = 2x - 3
-y = x - 18
_________
0 = 3x - 21
Inverse operations,
0 = 3x - 21
+21 +21
21 = 3x
/3 /3
7 = x
4. Find the value of the unknown variable
Backsovle to find the value of (y),
x + y = 18
Substitute,
7 + y = 18
Inverse operations,
7 + y = 18
-7 -7
y = 11
Answer: 25%
Step-by-step explanation:
Given: Selling price of each hat = $12
Profit on each hat = $3
To find: The percent of the selling price of each hat is the profit.
Ratio of profit to selling price = 
The required percentage = Ratio of profit to selling price x 100

The profit is 25% of the selling price.