Answer:
Length = 17 feet, Width = 5 feet
Step-by-step explanation:
Given:
The area of a rectangular wall of a barn is 85 square feet.
Its length is 12 feet longer than the width.
Question asked:
Find the length and width of the wall of the barn.
Solution:
Let width of a rectangular wall of a barn = 
<u>As length is 12 feet longer than the width.</u>
Length of a rectangular wall of a barn = 
As we know:


Subtracting both sides by 85

As width can never be in negative, hence width of a rectangular wall of a barn =
= 5 feet
Length of a rectangular wall of a barn = 
Therefore, length and width of the wall of the barn is 17 feet and 5 feet respectively.
Answer:
it depends how much one would cost
Step-by-step explanation:
and when u know how much one costs u can multiply it by 24 :)
A. equation: p=$10.75h
variables=p(profit) h(hours)
B. use this equation and plug in 37 for h then solve.
hope this helps
Explanation:
This can be explained by thinking numbers on the number line as:
Lets take we have to multiply a positive number (say, 2) with a negative number say (-3)
<u>2×(-3)</u>
Suppose someone is standing at 0 on the number line and to go to cover -3 , the person moves 3 units in the left hand side. Since, we have to compute for 2×(-3), The person has to cover the same distance twice. At last, he will be standing at -6, which is a negative number.
A image is shown below to represent the same.
<u>Thus, a positive times a negative is a negative number.</u>
Answer:

Step-by-step explanation:

![x^2+3x=10^{1\frac{1}{2}}\\\\x^2+3x=10^{1+\frac{1}{2}}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\\\\x^2+3x=10\cdot10^\frac{1}{2}\qquad\text{use}\ \sqrt[n]{a}=a^\frac{1}{n}\\\\x^2+3x=10\sqrt{10}\qquad\text{subtract}\ 10\sqrt{10}\ \text{from both sides}\\\\x^2+3x-10\sqrt{10}=0\\\\\text{Use the quadratic formula}\\\\ax^2+bx+c=0\\\\x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\a=1,\ b=3,\ c=-10\sqrt{10}\\\\b^2-4ac=3^2-4(1)(-10\sqrt{10})=9+40\sqrt{10}\\\\x=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2(1)}=\dfrac{-3\pm\sqrt{40+10\sqrt{10}}}{2}\\\\x=\dfrac{-3-\sqrt{10+10\sqrt{10}}}{2}\notin D](https://tex.z-dn.net/?f=x%5E2%2B3x%3D10%5E%7B1%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5E%7B1%2B%5Cfrac%7B1%7D%7B2%7D%7D%5Cqquad%5Ctext%7Buse%7D%5C%20a%5En%5Ccdot%20a%5Em%3Da%5E%7Bn%2Bm%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5Ccdot10%5E%5Cfrac%7B1%7D%7B2%7D%5Cqquad%5Ctext%7Buse%7D%5C%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%5Cfrac%7B1%7D%7Bn%7D%5C%5C%5C%5Cx%5E2%2B3x%3D10%5Csqrt%7B10%7D%5Cqquad%5Ctext%7Bsubtract%7D%5C%2010%5Csqrt%7B10%7D%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C%5C%5Cx%5E2%2B3x-10%5Csqrt%7B10%7D%3D0%5C%5C%5C%5C%5Ctext%7BUse%20the%20quadratic%20formula%7D%5C%5C%5C%5Cax%5E2%2Bbx%2Bc%3D0%5C%5C%5C%5Cx%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%5C%5C%5C%5Ca%3D1%2C%5C%20b%3D3%2C%5C%20c%3D-10%5Csqrt%7B10%7D%5C%5C%5C%5Cb%5E2-4ac%3D3%5E2-4%281%29%28-10%5Csqrt%7B10%7D%29%3D9%2B40%5Csqrt%7B10%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B-3%5Cpm%5Csqrt%7B40%2B10%5Csqrt%7B10%7D%7D%7D%7B2%281%29%7D%3D%5Cdfrac%7B-3%5Cpm%5Csqrt%7B40%2B10%5Csqrt%7B10%7D%7D%7D%7B2%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B-3-%5Csqrt%7B10%2B10%5Csqrt%7B10%7D%7D%7D%7B2%7D%5Cnotin%20D)