1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melisa1 [442]
4 years ago
9

3/5(x+2)=x-4What is the answer?Is it one solution,no solution, or Infinite solution?

Mathematics
1 answer:
Klio2033 [76]4 years ago
3 0

Answer:

One solution

Step-by-step explanation:

3/5(x+2)=x-4

I do not like working with fractions, so I will multiply by 5 on each side to clear the fractions.

5 *3/5(x+2)=5*(x-4)

3*(x+2)= 5*(x-4)

Distribute

3x+6 = 5x-20

Subtract 3x from each side

3x+6 = 5x-20

3x-3x+6 = 5x-3x-20

6 = 2x-20

Add 20 to each side

6+20 =2x-20+20

26 =2x

Divide each side by 2

26/2 = 2x/2

13=x


You might be interested in
I= pretty<br> aint= best<br> never= friends<br> seen2
notka56 [123]

Answer:

1

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
‐(5k – 3) ≤ 15 + 3k :) pls help
Juliette [100K]

Answer:

k≥-1.5

Step-by-step explanation:

-(5k-3) ≤ 15 + 3k

-5k+3 ≤15 +3k

+5k            +5k

3≤15+8k

-15  -15

-12 ≤ 8k

divide both sides by 8

-1.5 ≤ k

or k≥-1.5

Hope this Helps!!!

3 0
3 years ago
Read 2 more answers
Perform the indicated operations. x+1/3y+x-2/4y-x=3/6y
Varvara68 [4.7K]
The answer: 
_____________________________________________
x = (⅔)y ;

 y = 3x/2.
_____________________________________________
Given:

x + (⅓)y + x - (2/4)<span>y - x = (3/6)y ;
______________________________________ 
</span>
Take  the:  x + x - x = 1x + 1x - 1x = 2x - 1x = 1x = x ; 

and rewrite:

x + (⅓)y - (2/4)y = (3/6)y ;
_______________________________
 Note that:  (2/4)y = (<span>½)y ; 

        and:   (3/6)y = (</span><span>½)y ;  so;
___________________________
Rewrite as:
____________________________
</span>x + (⅓)y - (½)y = (½)y ;

Add "(½)y" to EACH SIDE of the equation;
_________________________________
    x  +  (⅓)y  -  (½)y  + (½)y = (½)y + (½)y ;

to get:  x +  (⅓)y = y ; 

x = 1y - (⅓)y = (3/3) y - (1/3)y - [ (3-1)/3] y = (⅔)y ; 

So:  x = (<span>⅔)y ;

In terms of "y" ; 

Given:  </span>(⅔)y = x ; Multiply each side of the equation by "3" ; 

3*[(⅔)y] = 3*x ;
 
 to get:  2y = 3x ;

Now, divide EACH SIDE of the equation by "2" ; to isolate "y" on one side of the equation; and to solve for "y" (in terms of "x"):

     2y / 2 = 3x / 2 ;

to get:  

      y = 3x/2 ;
___________________________________

6 0
4 years ago
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
3 years ago
If x=2 and y=5,evaluate the following expression: 20+2(3y−4x)
Xelga [282]

Answer:

34

Step-by-step explanation:

hope this helps :)

7 0
3 years ago
Read 2 more answers
Other questions:
  • Name the expression based on its degree and number of terms of 5x2 -2x +3
    12·1 answer
  • What are Egyptian contributions
    9·2 answers
  • 5 meters 10 centimeters =
    9·2 answers
  • PLEASE HELP! I Will Give You 20 POINTS!! Solve with absolute value. -|12-3.5x|=-5
    5·1 answer
  • Help!!! I don’t get this
    14·2 answers
  • If a 25 ft rope is cut into two sections with one section 4 times as long as the other section, how long is the shorter piece?
    10·1 answer
  • The circle with O has a circumference of 8pi inches. The central angle is 60 degrees. what is the length of the minor arc BSA
    8·1 answer
  • On a coordinate grid, where is the center of this circle?
    8·1 answer
  • What do i do with the negative? i completely forgot <img src="https://tex.z-dn.net/?f=%5Cfrac%7B-yx%5E%7B3%7Dz%5E%7B5%7D%20%7D%7
    6·1 answer
  • Can someone get me the moderator eric's profile link? thanks.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!