1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VARVARA [1.3K]
3 years ago
9

State whether the following statements are true or false, with reasoning:

Mathematics
1 answer:
zmey [24]3 years ago
3 0

Answer:

Attached is the complete working. Hope it helps.

You might be interested in
6. State the absolute maximum using the correct notation. Start answer with abs max: Please do not put any spaces in answer.​
Montano1993 [528]

Answer:3.5:80

Step-by-step explanation:

common sense

5 0
4 years ago
Read 2 more answers
How many terms are there in the expression 3x2 + 2x - 4?<br> A:1<br> B:2<br> C:3<br> D:4
Nadya [2.5K]

Answer:

3

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Standard form of the equation that goes through (3, -1) with a slope of -1, please!
11111nata11111 [884]

Answer:

x+y=2

Step-by-step explanation:

Standard Form: ax+by=c

For most convenience start with slope-intercept form: y=mx+b

1. -1 = -1(3)+b -  solve for b

b=2

y= -1x+2 (slope-intercept form)

2. Now convert to standard form

Add 1x to both sides:

1x+y=2

7 0
3 years ago
Which of the following numbers can be evenly divided by 4?
densk [106]
D is the answer it is divided by 4 evenly
6 0
3 years ago
Find the derivative of <img src="https://tex.z-dn.net/?f=tan%5E%7B-1%7D%20x" id="TexFormula1" title="tan^{-1} x" alt="tan^{-1} x
sladkih [1.3K]

\huge{\color{magenta}{\fbox{\textsf{\textbf{Answer}}}}}

\frak {\huge{ \frac{1}{1 +  {x}^{2} } }}

Step-by-step explanation:

\sf let \: f(x) =  { \tan }^{ - 1} x \\  \\  \sf f(x + h) =  { \tan}^{ - 1} (x + h)

\sf f'(x) =  \frac{f(x+h)  - f(x) }{h}

\sf \implies \lim_{  h \to 0  } \frac{ { \tan }^{ - 1}(x + h) -  { \tan}^{ - 1}x  }{h}  \\  \\  \\  \sf  \implies  \lim_ {h \to 0}    \frac{  { \tan}^{ - 1} \frac{x + h - x}{1 + (x + h)x} }{h}

By using

\sf { \tan}^{ - 1} x -  { \tan}^{ - 1} y   = \\   \sf { \tan}^{ - 1}  \frac{x - y}{1 + xy} formula

\sf  \implies  \large \lim_{h \to0 }   \frac{  { \tan}^{ - 1}  \frac{h}{1 + hx +  {x}^{2} } }{h}  \\  \\  \\  \sf  \implies   \large{\lim_{h \to0}   } \frac{ { \tan}^{ - 1}  \frac{h}{1 + hx +  {x}^{2} } }{ \frac{h}{1 + hx  +  {x}^{2} }  \times (1 + hx +  {x}^{2} )}  \\  \\  \\  \sf  \implies \large  \lim_{h \to0} \frac{ { \tan}^{ - 1} \frac{h}{1 + hx +  {x}^{2} }  }{ \frac{h}{1 + hx +  {x}^{2} } }  +  \lim_{h \to0} \frac{1}{1 + hx +  {x}^{2} }

<u>Now</u><u> </u><u>putting</u><u> </u><u>the</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>h</u><u> </u><u>=</u><u> </u><u>0</u>

<u>\sf  \large  \implies 0 +  \frac{1}{1 + 0 +  {x}^{2} }  \\  \\  \\  \purple{ \boxed  { \implies  \frac{1}{1 +  {x}^{2} } }}</u>

6 0
2 years ago
Other questions:
  • Factor completely 10x3 + 4x4 + 8x3
    13·1 answer
  • Marcus plotted the points (0, 0), (6, 2), (18, 6) and (21, 7) on a graph. He wrote an equation for the relationship. Find anothe
    5·1 answer
  • What is the value of x?
    10·1 answer
  • Compare 3/2 and 1/2 using &gt;, &lt; or =.​
    5·1 answer
  • Please help I don't understand ​
    5·1 answer
  • Yesterday, there were 40 problems assigned for math homework. Gavin got 28 out of 40 problems correct. What percentage did Gavin
    9·2 answers
  • Point B lies on line ¯¯¯¯¯¯ A C A C ¯ , as shown on the coordinate plane belew
    14·1 answer
  • Help Me!!!I will failll please they never taught me this!!!!
    8·2 answers
  • 1/5(g - 10) I need a answer please help fast
    13·2 answers
  • Pls help! if i fail math then ill get my phone taken away! pls :(
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!