Answer:
For this angular momentum, no quantum number exist
Explanation:
From the question we are told that
The magnitude of the angular momentum is 
The generally formula for Orbital angular momentum is mathematically represented as

Where
is the quantum number
now
We can look at the given angular momentum in this form as

comparing this equation to the generally equation for Orbital angular momentum
We see that there is no quantum number that would satisfy this equation
The exception to the rule concerning the solubility of chlorides in water is PbCl2.
The solubility rules give us an idea of which substances are soluble in water and what substances are not soluble in water. According to the solubility rules, chlorides are soluble in water.
However, chlorides of lead are not soluble in water hence, the exception to the rule is PbCl2.
Learn more: brainly.com/question/6505878
Riding your bike, you can accelerate at a rate of 2m/s^2. If you start from rest, how long will it take to reach a speed of 20m/s?
Answer:
As a wavelength increases in size, its frequency and energy (E) decrease. From these equations you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer.
Explanation:
13.5g
Explanation:
Given parameters:
Mass of Na = 10g
Mass of O₂ = 10g
Unknown:
Mass of products formed = ?
Balanced equation = ?
Solution:
The balanced chemical equation is shown below:
4Na + O₂ ⇒ 2Na₂O
In any reaction, the specie in short supply determines the extent of the reaction.
This reaction is not an exclusion. We need to first determine the specie in short supply and use it to estimate the amount of product since we have a 100% yield which signifies that all was used up.
let us convert to moles;
Number of moles of Na =
= 0.435mole
Number of moles of O₂ =
= 0.313mole
From the given equation;
4 moles of Na requires 1 mole of O₂;
0.435 moles of Na will require
= 0.11 moles
But the given amount O₂ is 0.313, this is an excess of 0.313 - 0.11 = 0.203moles
We see that Na is the limiting reagent;
4 moles of Na gives 2 mole of Na₂O
0.435 moles of Na will give
= 0.22 moles
Mass of Na₂O = number of moles x molar mass = 62 x 0.22 = 13.5g
learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly