Answer:
The dimensions of the yard are W=20ft and L=40ft.
Step-by-step explanation:
Let be:
W: width of the yard.
L:length.
Now, we can write the equation of that relates length and width:
(Equation #1)
The area of the yard can be expressed as (using equation #1 into #2):
(Equation #2)
Since the Area of the yard is
, then equation #2 turns into:

Now, we rearrange this equation:

We can divide the equation by 5 :

We need to find the solution for this quadratic. Let's find the factors of 160 that multiplied yields -160 and added yields -12. Let's choose -20 and 8, since
and
. The equation factorised looks like this:

Therefore the possible solutions are W=20 and W=-8. We discard W=-8 since width must be a positive number. To find the length, we substitute the value of W in equation #1:

Therefore, the dimensions of the yard are W=20ft and L=40ft.
answer= x=20
Step-by-step explanation:
We have, 35% × x = 7
or,
35
100
× x = 7
Multiplying both sides by 100 and dividing both sides by 35,
we have x = 7 ×
100
35
x = 20
If you are using a calculator, simply enter 7×100÷35, which will give you the answer.
Note that the 2nd equation can be re-written as y=8x-10.
According to the second equation, y=x^2+12x+30.
Equate these two equations to eliminate y:
8x-10 = x^2+12x+30
Group all terms together on the right side. To do this, add -8x+10 to both sides. Then 0 = x^2 +4x +40. You must now solve this quadratic equation for x, if possible. I found that this equation has NO REAL SOLUTIONS, so we must conclude that the given system of equations has NO REAL SOLUTIONS.
If you have a graphing calculator, please graph 8x-10 and x^2+12x+30 on the same screen. You will see two separate graphs that do NOT intersect. This is another way in which to see / conclude that there is NO REAL SOLUTION to this system of equations.
Answer:
See diagram below
Step-by-step explanation:
I added the picture but not sure if you can see it? Hope it helps!
The answer is 78.4. Hope this helps!