Answer:
The probability that a randomly selected call time will be less than 30 seconds is 0.7443.
Step-by-step explanation:
We are given that the caller times at a customer service center has an exponential distribution with an average of 22 seconds.
Let X = caller times at a customer service center
The probability distribution (pdf) of the exponential distribution is given by;

Here,
= exponential parameter
Now, the mean of the exponential distribution is given by;
Mean =
So,
⇒
SO, X ~ Exp(
)
To find the given probability we will use cumulative distribution function (cdf) of the exponential distribution, i.e;
; x > 0
Now, the probability that a randomly selected call time will be less than 30 seconds is given by = P(X < 30 seconds)
P(X < 30) =
= 1 - 0.2557
= 0.7443
All given options are incorrect ..
As no one is the equation of a circle
Answer:
4%
Step-by-step explanation:
1000 of 25000 is 4%
Okay so.
A is 4.95
B is 4.95
C is 4.95
D is 4.95
E is 0.495
So I guess E is the Answer! :)
Is there more context to the question?