bearing in mind that standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient

![\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-1)}=\stackrel{m}{\cfrac{8}{9}}[x-\stackrel{x_1}{(-4)}]\implies y+1=\cfrac{8}{9}(x+4) \\\\\\ \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{9}}{9(y+1)=9\left( \cfrac{8}{9}(x+4) \right)}\implies 9y+9=8(x+4)\implies 9y+9=8x+32 \\\\\\ 9y=8x+23\implies -8x+9y=23\implies 8x-9y=-23](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B%28-1%29%7D%3D%5Cstackrel%7Bm%7D%7B%5Ccfrac%7B8%7D%7B9%7D%7D%5Bx-%5Cstackrel%7Bx_1%7D%7B%28-4%29%7D%5D%5Cimplies%20y%2B1%3D%5Ccfrac%7B8%7D%7B9%7D%28x%2B4%29%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B9%7D%7D%7B9%28y%2B1%29%3D9%5Cleft%28%20%5Ccfrac%7B8%7D%7B9%7D%28x%2B4%29%20%5Cright%29%7D%5Cimplies%209y%2B9%3D8%28x%2B4%29%5Cimplies%209y%2B9%3D8x%2B32%20%5C%5C%5C%5C%5C%5C%209y%3D8x%2B23%5Cimplies%20-8x%2B9y%3D23%5Cimplies%208x-9y%3D-23)
Answer:
x = -2
Step-by-step explanation:
2x = -8+4
2x = -4
x = -2
CHECK
-4 - 4 = -8
The brake horsepower of an engine that’s being tested is coupled to a dynamometer that has a radius arm of 1.70 feet is letter D. 170.
Answer:
Part A :
The scale factor of the dilation that transforms triangle PQR to triangle P'Q'R' is divided by 3.
Part B :
P"(-1,2), Q"(0,3), R"(1,0)
Part C :
Triangle PQR and P"Q"R" are not congruent because congruent means equal and similar but triangle PQR and P"Q"R" are proportional because they are rational to each other but do not have the same measures of sides but the angles are congruent.
This is the graphing of the triangle.