1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
5

Use the discriminant to predict the nature of the solutions to the equation 4x-3x²=10. Then, solve the equation.

Mathematics
1 answer:
AleksandrR [38]3 years ago
7 0

Answer:

Two imaginary solutions:

x₁= \frac{2}{3} -\frac{1}{3} i\sqrt{26}

x₂ = \frac{2}{3} +\frac{1}{3} i\sqrt{26}

Step-by-step explanation:

When we are given a quadratic equation of the form ax² +bx + c = 0, the discriminant is given by the formula b² - 4ac.

The discriminant gives us information on how the solutions of the equations will be.

  1. <u>If the discriminant is zero</u>, the equation will have only one solution and it will be real
  2. <u>If the discriminant is greater than zero</u>, then the equation will have two solutions and they both will be real.
  3. <u>If the discriminant is less than zero,</u> then the equation will have two imaginary solutions (in the complex numbers)

So now we will work with the equation given: 4x - 3x² = 10

First we will order the terms to make it look like a quadratic equation ax²+bx + c = 0

So:

4x - 3x² = 10

-3x² + 4x - 10 = 0 will be our equation

with this information we have that a = -3 b = 4 c = -10

And we will find the discriminant: b^{2} -4ac = 4^{2} -4(-3)(-10) = 16-120=-104

Therefore our discriminant is less than zero and we know<u> that our equation will have two solutions in the complex numbers. </u>

To proceed to solve the equation we will use the general formula

x₁= (-b+√b²-4ac)/2a

so x₁ = \frac{-4+\sqrt{-104} }{2(-3)} \\\frac{-4+\sqrt{-104} }{-6}\\\frac{-4+2\sqrt{-26} }{-6} \\\frac{-4+2i\sqrt{26} }{-6} \\\frac{2}{3} -\frac{1}{3} i\sqrt{26}

The second solution x₂ = (-b-√b²-4ac)/2a

so x₂=\frac{-4-\sqrt{-104} }{2(-3)} \\\frac{-4-\sqrt{-104} }{-6}\\\frac{-4-2\sqrt{-26} }{-6} \\\frac{-4-2i\sqrt{26} }{-6} \\\frac{2}{3} +\frac{1}{3} i\sqrt{26}

These are our two solutions in the imaginary numbers.

You might be interested in
Combine the radicals -2 Square root 13 + 19 Square root 13
Alina [70]
The answer is 6.8383838
3 0
3 years ago
While standing in front of the school
kenny6666 [7]

Answer:

Step-by-step explanation:

what do u see!????????

4 0
2 years ago
Jason bought 10 of the 30 raffle tickets for a drawing. What is the probability that Jason will win all 3 of the prizes if once
lyudmila [28]
10/30) x (9/29) x (8/28)  =  720 / 24,360

                                                             =  6 / 203  =  2.96 percent (rounded)   
6 0
3 years ago
Read 2 more answers
If vector u has its initial point at (-7, 3) and its terminal point at (5, -6), u =
attashe74 [19]

First of all, let <span>θθ</span> be some angle in <span><span>(0,π)</span><span>(0,π)</span></span>. Then

<span><span><span>θθ</span> is acute <span>⟺⟺</span> <span><span>θ<<span>π2</span></span><span>θ<<span>π2</span></span></span> <span>⟺⟺</span> <span><span>cosθ>0</span><span>cos⁡θ>0</span></span>.</span><span><span>θθ</span> is right <span>⟺⟺</span> <span><span>θ=<span>π2</span></span><span>θ=<span>π2</span></span></span> <span>⟺⟺</span> <span><span>cosθ=0</span><span>cos⁡θ=0</span></span>.</span><span><span>θθ</span> is obtuse <span>⟺⟺</span> <span><span>θ><span>π2</span></span><span>θ><span>π2</span></span></span> <span>⟺⟺</span> <span><span>cosθ<0</span><span>cos⁡θ<0</span></span>.</span></span>

Now, to see if (say) angle <span>AA</span> of the triangle <span><span>ABC</span><span>ABC</span></span> is acute/right/obtuse, we need to check whether <span><span>cos∠BAC</span><span>cos⁡∠BAC</span></span> is positive/zero/negative. But what is <span><span>cos∠BAC</span><span>cos⁡∠BAC</span></span>? It is the angle made by the vectors <span><span><span>AB</span><span>−→−</span></span><span><span>AB</span>→</span></span> and <span><span><span>AC</span><span>−→−</span></span><span><span>AC</span>→</span></span>. (When you are computing the angle at a particular vertex <span>vv</span>, you should make sure that both the vectors corresponding to the two adjacent sides have that vertex <span>vv</span> as the initial point.) We will first compute these two vectors:

<span><span><span><span>AB</span><span>−→−</span></span>=(0,0,0)−(1,2,0)=(−1,−2,0)</span><span><span><span>AB</span>→</span>=(0,0,0)−(1,2,0)=(−1,−2,0)</span></span><span><span><span><span>AC</span><span>−→−</span></span>=(−2,1,0)−(1,2,0)=(−3,−1,0)</span><span><span><span>AC</span>→</span>=(−2,1,0)−(1,2,0)=(−3,−1,0)</span></span>Therefore, the angle between these vectors is given by:<span><span><span>cos∠BAC=<span><span><span><span>AB</span><span>−→−</span></span>⋅<span><span>AC</span><span>−→−</span></span></span><span>|<span><span>AB</span><span>−→−</span></span>||<span><span>AC</span><span>−→−</span></span>|</span></span>=…</span>(1)</span><span>(1)<span>cos⁡∠BAC=<span><span><span><span>AB</span>→</span>⋅<span><span>AC</span>→</span></span><span>|<span><span>AB</span>→</span>||<span><span>AC</span>→</span>|</span></span>=…</span></span></span>Can you take it from here? From the sign of this value, you should be able to decide if angle <span>AA</span> is acute/right/obtuse.

Now, do the same procedure for the remaining two angles <span>BB</span> and <span>CC</span> as well. That should help you solve the problem.

A shortcut. Since you are not interested in the actual values of the angles, but you need only whether they are acute, obtuse or right, it is enough to compute only the sign of the numerator (the dot product between the vectors) in formula (1). The denominator is always positive.

6 0
3 years ago
I need help with this question please​
Art [367]

9514 1404 393

Answer:

  77

Step-by-step explanation:

The sum of the measures of the two given arcs is 180°, the measure of semicircle ADC. Using this fact, we can find x and the measure of DC.

  AD +DC = 180

  (19x -49) +(5x +37) = 180

  24x = 192 . . . . . . . . . . . add 12, simplify

  x = 8 . . . . . . . . . . divide by 24

Then the measure of DC is ...

  DC = 5x +37 = 5(8) +37 = 40 +37

  DC = 77

8 0
2 years ago
Other questions:
  • 51,487 rounded by nearest thousand
    5·1 answer
  • Help me with this question please ? and how do I get the answer?
    8·1 answer
  • What is 534.076 rounded to the nearest hundredth? A. 534.07 B. 534 C. 500 D. 534.08
    13·2 answers
  • HELP PLEASE! Thank youuuuu
    6·1 answer
  • 10 x 3 tens - unit form and standard form
    11·2 answers
  • The measures of angle 1and angle 2 are 25% and 45% of the sum of the angle measures of the triangle. Find the value of x.
    5·1 answer
  • Write1/64 as a power of 2
    15·2 answers
  • Graph the equation.<br> y =<br> -3/4<br> (2+3)(x + 7)
    5·1 answer
  • V=u + at<br> u= 2<br> a = -5<br> t = Î<br> 2<br> Work out the value of v.
    5·1 answer
  • Assuming the weights are in kilograms, what is the mystery weight of y? use the equation you created in part a to find the solut
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!