Answer:
It will sink
Explanation:
The density of the water is 1 g/cm³
- Elements having less density than water will float
- Elements having more density than water will sink
We are given that the density of density of aluminum is 2.7 g/cm³ which is more than the density of the water.
Therefore, it will sink.
Hope this helps :)
Answer:
a magnifying scope
Explanation: you get a close up view of the target and because of that there is a lower margin of error
Inert gases are gases that don't react with other elements. What this means is that they won't combine with other elements, and trigger chemical reactions. I've posted a picture of the Periodic Table. Take a look at the VERY LAST row, all the way on the RIGHT side of the table. That row is made of up NOBLE GASES (He, Ne, Ar, Kr, etc.) Those noble gases are INERT. They are non-reactive.
Answer:
9000 BC
Explanation:
Although various copper tools and decorative items dating back as early as 9000 BCE have been discovered, archaeological evidence suggests that it was the early Mesopotamians who, around 5000 to 6000 years ago, were the first to fully harness the ability to extract and work with copper.
Answer:
(a) 1s² 2s² 2p⁶ 3s² 3p⁴
(b) 1s² 2s² 2p⁶ 3s² 3p⁵
(c) sp³
(d) No valence orbital remains unhybridized.
Explanation:
<em>Consider the SCl₂ molecule. </em>
<em>(a) What is the electron configuration of an isolated S atom? </em>
S has 16 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁴.
<em>(b) What is the electron configuration of an isolated Cl atom? </em>
Cl has 17 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁵.
<em>(c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl₂? </em>
SCl₂ has a tetrahedral electronic geometry. Therefore, the orbital 3s hybridizes with the 3 orbitals 3 p to form 4 hybrid orbital sp³.
<em>(d) What valence orbitals, if any, remain unhybridized on the S atom in SCl₂?</em>
No valence orbital remains unhybridized.