It would take her about 15 seconds
The answer is
Final result :
x - 2
Step by step solution :
Step 1 :
1
Simplify —
3
Equation at the end of step 1 :
2 1
((—•x)-7)+((—•x)+5)
3 3
Step 2 :
Rewriting the whole as an Equivalent Fraction :
2.1 Adding a whole to a fraction
Rewrite the whole as a fraction using 3 as the denominator :
5 5 • 3
5 = — = —————
1 3
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
2.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x + 5 • 3 x + 15
————————— = ——————
3 3
Equation at the end of step 2 :
2 (x + 15)
((— • x) - 7) + ————————
3 3
Step 3 :
2
Simplify —
3
Equation at the end of step 3 :
2 (x + 15)
((— • x) - 7) + ————————
3 3
Step 4 :
Rewriting the whole as an Equivalent Fraction :
4.1 Subtracting a whole from a fraction
Rewrite the whole as a fraction using 3 as the denominator :
7 7 • 3
7 = — = —————
1 3
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
2x - (7 • 3) 2x - 21
———————————— = ———————
3 3
Equation at the end of step 4 :
(2x - 21) (x + 15)
————————— + ————————
3 3
Step 5 :
Adding fractions which have a common denominator :
5.1 Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
(2x-21) + (x+15) 3x - 6
———————————————— = ——————
3 3
Step 6 :
Pulling out like terms :
6.1 Pull out like factors :
3x - 6 = 3 • (x - 2)
Final result :
x - 2
100% Verified!
Hope This Helps! :)
Let's represent the two numbers by x and y. Then xy=60. The smaller number here is x=y-7.
Then (y-7)y=60, or y^2 - 7y - 60 = 0. Use the quadratic formula to (1) determine whether y has real values and (2) to determine those values if they are real:
discriminant = b^2 - 4ac; here the discriminant is (-7)^2 - 4(1)(-60) = 191. Because the discriminant is positive, this equation has two real, unequal roots, which are
-(-7) + sqrt(191)
y = -------------------------
-2(1)
and
-(-7) - sqrt(191)
y = ------------------------- = 3.41 (approximately)
-2(1)
Unfortunately, this doesn't make sense, since the LCM of two numbers is generally an integer.
Try thinking this way: If the LCM is 60, then xy = 60. What would happen if x=5 and y=12? Is xy = 60? Yes. Is 5 seven less than 12? Yes.
Answer:
y = 4 + -2x
Step-by-step explanation:
Simplifying
y = -2x + 4
Reorder the terms:
y = 4 + -2x
Solving
y = 4 + -2x
Solving for variable 'y'.
Move all terms containing y to the left, all other terms to the right.
Simplifying
y = 4 + -2x