Answer:
3.01 × 10²³ molecules
Explanation:
Step 1: Given data
Moles of water (n): 0.500 mol
Step 2: Calculate the molecules of water present in 0.500 moles of water
In order to perform this calculation, we will use the Avogadro's number: in 1 mole of water there are 6.02 × 10²³ molecules of water.
0.500 mol × (6.02 × 10²³ molecules/1 mol) = 3.01 × 10²³ molecules
The reagent which limits the reaction is called limiting reagents.
____
For example:- N2+3H2gives 2NH3.so here nitrogen limits the reaction.
The mass of chlorine that react with 9.00 g of Al to form AlCl3 is 35.465 grams
Explanation
write the equation for reaction
that is
2 Al + 3 Cl2 = 2 Al CL3
find the moles of Al reacted
moles = mass/molar mass
9 g/ 27 g/mol = 0.333 moles of Al
by use of mole ratio between Al to Cl2 which is 2:3 find the moles of Cl2
mole of cl2 = 0.333 x3/2 = 0.4995 moles
mass of Cl2 is therefore = moles x molar mass
= 0.4995 x71 = 35.465 moles
Answer:
It's D. On the surface of the solid.
Explanation:
If the reactant is a solid, the surface area of the solid will impact how fast the reaction goes. This is because the two types of molecule can only bump into each other at the liquid solid interface, i.e. on the surface of the solid. So the larger the surface area of the solid, the faster the reaction will be.
N₂O₄ (g) ⇌ 2 NO₂ (g)
Kc = [ NO₂ ]² / [ N₂O₄ ]
4.2 = [ 0.785 ] [ N₂O₄ ]
[ N₂O₄ ] = 4.2 / 0.785
[N₂O₄ ] = 5.350 M
hope this helps!