Yes. Mercury has 80 protons. Tin has 50 protons. Same for electrons, it just doesn't have an exact number.
pH value 1 represents a solution with the lowest OH⁻ion concentration.
<u>Explanation:</u>
pH is given by the expression as the negative logarithm to the base 10 of the concentration of hydrogen ions.
pH = -log₁₀[H⁺]
If the pH is lower than 7, pH < 7 then it is acidic
If the pH = 7, then it is neutral
If the pH > 7, then it is basic
If pH is 1 then the solution is showing mostly acidic character,which is least basic in its character.
So if the pH is 1, which is most acidic and least basic solution that is lowest OH⁻ ion concentration.
Answer:
a) ammonium ion
b) amide ion
Explanation:
The order of decreasing bond angles of the three nitrogen species; ammonium ion, ammonia and amide ion is NH4+ >NH3> NH2-. Next we need to rationalize this order of decreasing bond angles from the valence shell electron pair repulsion (VSEPR) theory perspective.
First we must realize that all three nitrogen species contain a central sp3 hybridized carbon atom. This means that a tetrahedral geometry is ideally expected. Recall that the presence of lone pairs distorts molecular structures from the expected geometry based on VSEPR theory.
The amide ion contains two lone pairs of electrons. Remember that the presence of lone pairs causes greater repulsion than bond pairs on the outermost shell of the central atom. Hence, the amide ion has the least H-N-H bond angle of about 105°.
The ammonia molecule contains one lone pair, the repulsion caused by one lone pair is definitely bless than that caused by two lone pairs of electrons hence the bond angle of the H-N-H bond in ammonia is 107°.
The ammonium ion contains four bond pairs and no lone pair of electrons on the outermost nitrogen atom. Hence we expect a perfect tetrahedron with bond angle of 109°.
Answer:
3Mg(NO3)2(aq)+2Na3PO4(aq)⇒Mg3(PO4)2(s)+6NaNO3(aq)
Explanation: