1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
3 years ago
6

20 POINTS!!!

Mathematics
2 answers:
elena-s [515]3 years ago
8 0

\ \ \dfrac{2}{\sqrt{3} \cos (x) + \sin(x)} = \sec\left(\frac{\pi}{6} - x\right)

Right-hand side

\text{RHS} = \sec\left(\dfrac{\pi}{6} - x\right)

Since \sec x = \frac{1}{\cos x}, it follows that

\sec\left(\frac{\pi}{6} - x\right) = \dfrac{1}{\cos\left(\frac{\pi}{6} - x\right) }

So we can rewrite

\begin{aligned} \text{RHS} &= \sec\left(\dfrac{\pi}{6} - x\right) \\ &= \dfrac{1}{\cos\left(\frac{\pi}{6} - x\right)} \end{aligned}

We have a cosine difference identity for the denominator:

\begin{aligned} \cos(A-B) &= \cos A \cos B + \sin A \sin B \\ \cos\left(\tfrac{\pi}{6} - x\right) &= \cos\left(\tfrac{\pi}{6}\right) \cos (x) + \sin\left(\tfrac{\pi}{6}\right)\sin(x) \end{aligned}

Since \sin\left(\tfrac{\pi}{6}\right) = 1/2 and \cos\left(\tfrac{\pi}{6}\right) = \sqrt{3}/2, we have

\begin{aligned}\cos\left(\tfrac{\pi}{6} - x\right) &= \cos\left(\tfrac{\pi}{6}\right) \cos (x) + \sin\left(\tfrac{\pi}{6}\right)\sin(x) \\ &= \tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x) \end{aligned}

Using this in the right-hand side

\begin{aligned} \text{RHS} &= \dfrac{1}{\cos\left(\frac{\pi}{6} + x\right)} \\ &= \frac{1}{\tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x)} \end{aligned}

Notice how we have tiny denominators of 2.If we multiply the numerator and denominator of the entire fraction, we will deal with those twos, as 2 will distribute and cancel.

\begin{aligned} \text{RHS} &= \frac{1}{\tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x)} \\ &=\frac{2 \cdot(1)}{2 \cdot \left(\tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x)\right)} \\ &= \frac{2}{\sqrt{3} \cos (x) + \sin(x)} \\ &= \text{LHS} \end{aligned}

notka56 [123]3 years ago
6 0

\dfrac{2}{\sqrt3\cos x+\sin x}=\sec\left(\dfrac{\pi}{6}-x\right)\\\\\dfrac{2}{\sqrt3\cos x+\sin x}=\dfrac{1}{\cos\left(\dfrac{\pi}{6}-x\right)}\ \ \ \ \ (*)\\----------------\\\\\cos\left(\dfrac{\pi}{6}-x\right)\ \ \ \ |\text{use}\ \cos(x-y)=\cos x\cos y+\sin x\sin y\\\\=\cos\dfrac{\pi}{6}\cos x+\sin\dfrac{\pi}{6}\sin x=\dfrac{\sqrt3}{2}\cos x+\dfrac{1}{2}\sin x=\dfrac{\sqrt3\cos x+\sin x}{2}\\------------------------------

(*)\\R_s=\sec\left(\dfrac{\pi}{6}-x\right)=\dfrac{1}{\cos\left(\dfrac{\pi}{6}-x\right)}=\dfrac{1}{\dfrac{\sqrt3\cos x+\sin x}{2}}\\\\=\dfrac{2}{\sqrt3\cos x+\sin x}=L_s

You might be interested in
the linear combination method is applied to a system of equations as shown.4(.25x .5y = 3.75) → x 2y = 15 (4x – 8y = 12) → x – 2
gtnhenbr [62]
If we use the last equation:
2 x = 18
x = 18 : 2
x = 9
Then we will put it in another equation:
 x - 2 y = 3
 9 - 2 y = 3
 - 2 y = 3 - 9
 - 2 y = -6
  y = -9 : ( -3 ) 
  y = 3.
   The solution is : D ) ( 9, 3 )
4 0
3 years ago
What it's the value of the expression 8 times 9-7+4 times 5
MaRussiya [10]
8 times 9 - 7 + 4 times 5

Use PEMDAS. Parentheses, Exponent, Multiply, Divide, Add, Subtract

Multiply:
8 times 9 = 72
4 times 5 = 20

72 - 7 + 20

Add:
72 + 20 = 92

Subtract:
92 - 7 = 85

8 times 9 - 7 + 4 times 5 is equal to 85.
7 0
3 years ago
Read 2 more answers
Two sets of the sum of a number and eight are added to five times the same number
pantera1 [17]
13+13
That’d be
26!!!!
7 0
3 years ago
Write the equation for a line that has an initial value of 3 and 3/4 as it’s rate of change
frutty [35]

the slope goes by several names

• average rate of change

• rate of change

• deltaY over deltaX

• Δy over Δx

• rise over run

• gradient

• constant of proportionality

however, is the same cat wearing different costumes.

initial value of 3, namely when x = 0, y = 3, so we have the point (0 , 3) and it has a rate or slope of 3/4.

(\stackrel{x_1}{0}~,~\stackrel{y_1}{3})\qquad \qquad \stackrel{slope}{m}\implies \cfrac{3}{4} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{\cfrac{3}{4}}(x-\stackrel{x_1}{0})\implies y=\cfrac{3}{4}x+3

3 0
3 years ago
PLS HELP DO ALL PROBLEMS 100 PTS
padilas [110]

Answer

4. - x ^ 2 + 13x - 42 <= 0524211r

5. x ^ 2 - 11x - 42 < 0

16 - x ^ 2 + 9x - 8 <= 0

17. x^ 2 -11x+80<0

18. - x ^ 2 + 3x + 4 <= 0

19. x ^ 2 - 12x + 36 <= 0

20. 2x ^ 2 - 32x + 56 < 0

21. x ^ 2 - 10x - 96 < 0

3 0
2 years ago
Other questions:
  • Maekyala's Room is 65m by 3m by 3m.How many cubic meter of air will her room hold?
    10·1 answer
  • 3 teacher shar 2 pack of paper equally
    12·1 answer
  • Hhhhhhheeeeeeeelp please
    5·2 answers
  • Why is it important to consider multiplicity when determining the roots of a polynomial equation?
    9·1 answer
  • If 3x+y=4 then what is the value of 1/y
    15·1 answer
  • -6x-2y=9 what is the slope
    6·1 answer
  • Get brainly if right!! Plsss help
    6·1 answer
  • Find the volume for this shape
    10·1 answer
  • Evaluate 7 with an exponent of -2
    14·1 answer
  • (WORTH 70 PLS HELP) What percent of the values represented in this box-and-whisker plot are less than 20?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!