1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
3 years ago
6

20 POINTS!!!

Mathematics
2 answers:
elena-s [515]3 years ago
8 0

\ \ \dfrac{2}{\sqrt{3} \cos (x) + \sin(x)} = \sec\left(\frac{\pi}{6} - x\right)

Right-hand side

\text{RHS} = \sec\left(\dfrac{\pi}{6} - x\right)

Since \sec x = \frac{1}{\cos x}, it follows that

\sec\left(\frac{\pi}{6} - x\right) = \dfrac{1}{\cos\left(\frac{\pi}{6} - x\right) }

So we can rewrite

\begin{aligned} \text{RHS} &= \sec\left(\dfrac{\pi}{6} - x\right) \\ &= \dfrac{1}{\cos\left(\frac{\pi}{6} - x\right)} \end{aligned}

We have a cosine difference identity for the denominator:

\begin{aligned} \cos(A-B) &= \cos A \cos B + \sin A \sin B \\ \cos\left(\tfrac{\pi}{6} - x\right) &= \cos\left(\tfrac{\pi}{6}\right) \cos (x) + \sin\left(\tfrac{\pi}{6}\right)\sin(x) \end{aligned}

Since \sin\left(\tfrac{\pi}{6}\right) = 1/2 and \cos\left(\tfrac{\pi}{6}\right) = \sqrt{3}/2, we have

\begin{aligned}\cos\left(\tfrac{\pi}{6} - x\right) &= \cos\left(\tfrac{\pi}{6}\right) \cos (x) + \sin\left(\tfrac{\pi}{6}\right)\sin(x) \\ &= \tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x) \end{aligned}

Using this in the right-hand side

\begin{aligned} \text{RHS} &= \dfrac{1}{\cos\left(\frac{\pi}{6} + x\right)} \\ &= \frac{1}{\tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x)} \end{aligned}

Notice how we have tiny denominators of 2.If we multiply the numerator and denominator of the entire fraction, we will deal with those twos, as 2 will distribute and cancel.

\begin{aligned} \text{RHS} &= \frac{1}{\tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x)} \\ &=\frac{2 \cdot(1)}{2 \cdot \left(\tfrac{\sqrt{3}}{2}\cos (x) + \tfrac{1}{2}\sin(x)\right)} \\ &= \frac{2}{\sqrt{3} \cos (x) + \sin(x)} \\ &= \text{LHS} \end{aligned}

notka56 [123]3 years ago
6 0

\dfrac{2}{\sqrt3\cos x+\sin x}=\sec\left(\dfrac{\pi}{6}-x\right)\\\\\dfrac{2}{\sqrt3\cos x+\sin x}=\dfrac{1}{\cos\left(\dfrac{\pi}{6}-x\right)}\ \ \ \ \ (*)\\----------------\\\\\cos\left(\dfrac{\pi}{6}-x\right)\ \ \ \ |\text{use}\ \cos(x-y)=\cos x\cos y+\sin x\sin y\\\\=\cos\dfrac{\pi}{6}\cos x+\sin\dfrac{\pi}{6}\sin x=\dfrac{\sqrt3}{2}\cos x+\dfrac{1}{2}\sin x=\dfrac{\sqrt3\cos x+\sin x}{2}\\------------------------------

(*)\\R_s=\sec\left(\dfrac{\pi}{6}-x\right)=\dfrac{1}{\cos\left(\dfrac{\pi}{6}-x\right)}=\dfrac{1}{\dfrac{\sqrt3\cos x+\sin x}{2}}\\\\=\dfrac{2}{\sqrt3\cos x+\sin x}=L_s

You might be interested in
List two advantages of buying and two advantages of renting
Ede4ka [16]
Here are your answers:                                                                                   Renting:                                                                                                               1. When you rent something you will have for a good amount of time.               2. When you rent something you have control over it since you rented it with your money.                                                                                                    Buying:                                                                                                                 2, You get to keep it forever.                                                                      3. you can sell it for more so you can make a profit to buy something else.
7 0
3 years ago
Read 2 more answers
Who can friend me first<br> also view my profile
gavmur [86]

Answer:

LOL OK

Step-by-step explanation:

HAHAHAHAHAHAHAHAHAHAHAHA

6 0
3 years ago
The following circle graph represents how the Townsends spend their monthly income. What is the central angle measure of the sec
mars1129 [50]
Please say brainliest.

It would be 18 degrees.

5% of 360(the total number of degrees in a circle) = 18 degrees
3 0
3 years ago
8. A triangle has sides with lengths of 6, 8, and 10 units, and a square has a
svet-max [94.6K]

Difference between the area of the triangle and square is 25

Step-by-step explanation:

  • Step 1: Find the area of the triangle given its 3 sides using the Heron's formula.

Area of the triangle = \sqrt{s (s-a)(s-b)(s-c)} where s = \frac{a + b + c}{2}

⇒ s = (6 + 8 + 10)/2 = 24/2 = 12

\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{12(12-6)(12-8)(12-10)}

                                    = \sqrt{12(6)(4)(2)} = \sqrt{576} = 24 sq. units

  • Step 2: Find the area of the square with perimeter = 28 units.

Perimeter of the square = 4 × side = 28

⇒ Side of the square = 28/4 = 7 units

⇒ Area of the square = (side)² = 7² = 49 sq. units

  • Step 3: Find the difference between the area of the square and triangle.

Difference = 49 - 24 = 25

8 0
3 years ago
What type of association is shown in this scatter plot?
weeeeeb [17]
D strong and positive
7 0
3 years ago
Read 2 more answers
Other questions:
  • Consider quadrilateral LMNO. If quadrilateral LMNO is a parallelogram, what must the measure of angle LMN be? m∠LMN = °
    10·2 answers
  • Can someone help me with this also and show the the work !
    7·2 answers
  • Solve for x. 2/5x=6/5 <br><br><br> A. 12/25 <br><br> B. 12/5<br><br> C. 3<br><br> D. 6
    12·1 answer
  • A computer printer can print 10 pages per minute.
    12·1 answer
  • What divided by 5 equals 6 ? <br><br>? ÷ 5 = 6
    15·2 answers
  • Beau’s recipe goes granola bars call for 3 1/2 of oatmeal . He only has 1/6 cup scoop. How many scoops of oatmeal will he need f
    14·2 answers
  • Which number represents a square root of 3 (cosine (StartFraction pi Over 2 EndFraction) + I sine (StartFraction pi Over 2 EndFr
    5·1 answer
  • What is the measure of PRQ
    6·1 answer
  • I need help please ASAP
    7·2 answers
  • Describe the data in the table
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!