Work the information to set inequalities that represent each condition or restriction.
2) Name the
variables.
c: number of color copies
b: number of black-and-white copies
3)
Model each restriction:
i) <span>It
takes 3 minutes to print a color copy and 1 minute to print a
black-and-white copy.
</span><span>
</span><span>
3c + b</span><span>
</span><span>
</span><span>ii) He needs to print
at least 6 copies ⇒
c + b ≥ 6</span><span>
</span><span>
</span><span>iv) And must have
the copies completed in
no more than 12 minutes ⇒</span>
3c + b ≤ 12<span />
4) Additional restrictions are
c ≥ 0, and
b ≥ 0 (i.e.
only positive values for the number of each kind of copies are acceptable)
5) This is how you
graph that:
i) 3c + b ≤ 12: draw the line 3c + b = 12 and shade the region up and to the right of the line.
ii) c + b ≥ 6: draw the line c + b = 6 and shade the region down and to the left of the line.
iii) since c ≥ 0 and b ≥ 0, the region is in the
first quadrant.
iv) The final region is the
intersection of the above mentioned shaded regions.v) You can see such graph in the attached figure.
Answer:
no clue
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
The slope is 4.
Let's find the slope between your two points.
(1,−2); (3,6)
(x1,y1) = (1,−2)
(x2,y2) = (3,6)
Use the slope formula:
m = y2−y1 / x2−x1
= 6− −2 / 3−1
= 8 / 2
= 4
Answer:
m = 4
Answer:
a) 3.47% probability that there will be exactly 15 arrivals.
b) 58.31% probability that there are no more than 10 arrivals.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given time interval.
If the mean number of arrivals is 10
This means that
(a) that there will be exactly 15 arrivals?
This is P(X = 15). So
3.47% probability that there will be exactly 15 arrivals.
(b) no more than 10 arrivals?
This is
58.31% probability that there are no more than 10 arrivals.