Answer:
There is no picture or graph to go with the question so I am afraid I will not be able to give you a specific answer.
To find out if a point (x, y) is on the graph of a line, we plug in the values into that equation and see if we get a true statement, such as 10 = 10. If we get something different, like 6 = 4, we know that the point is not on the line because it does not satisfy the equation. Plug in (-301, 601) into the equation of the line to see whether that point lies on it or not.
Step-by-step explanation:
Suppose the equation of the straight line that passes through E and F is this:
y = 7x + 2
We are to figure out whether or not the point (1, 10) lies on that line. In order to do this we would plug in (1, 10) into the equation, with 1 being x and 10 being y.
10 = 7(1) + 2 = 7 + 2 = 9
10 = 9 is a false statement. Therefore, the point (1, 10) does NOT lie on the line y = 7x + 2.
If you were to provide an image or graph that shows the equation of line AB then perhaps I would be able to answer your question with a specific answer.
The answer is 0 because any number elevated to 0 is 0
Answer:
a ≤ 15
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define</u>
3(a - 4) ≤ 33
<u>Step 2: Solve for </u><em><u>a</u></em>
- Divide 3 on both sides: a - 4 ≤ 11
- Add 4 on both sides: a ≤ 15
Here we see that any value <em>a </em>less than or equal to 15 would work as a solution to the inequality.
Answer:
Step-by-step explanation:
49.3488