The average rate of change of a function f(x) on the interval [a,b] is given by:
f(b) - f(a)
-------------
b-a
In this specific case, a=2 and b = 3.
f(2) = -3 and f(3) = -1.
Thus, the average rate of change here of f(x) on the interval [2,3] is:
-1 - (- 3) 2
------------- = ------------- = 2 (answer)
3-2 1
Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
9514 1404 393
Answer:
(x +6)^2 +(y -10)^2 = 225
Step-by-step explanation:
The standard form equation for a circle is ...
(x -h)^2 + (y -k)^2 = r^2
where the center is (h, k) and the radius is r.
The center of a circle is the midpoint of any diameter. The midpoint between two points is the average of their coordinates.
((-15, -2) +(3, 22))/2 = (-15+3, -2+22)/2 = (-6, 10)
The radius can be found using the distance formula, or by simply putting one of the given points in the equation for the circle to see what the constant (r^2) needs to be.
(x -(-6))^2 +(y -10)^2 = (-15-(-6))^2 +(-2-10)^2
(x +6)^2 +(y -10)^2 = 81 +144 = 225
The equation of the circle is ...
(x +6)^2 +(y -10)^2 = 225
Answer:
all values! x ∈ R
Step-by-step explanation:
The derivative f'(x) = 6x²-6x+12 is a parabola opening upward, with its (positive!) minimum at (0.5, 11.5). If the derivative is always positive, the function must be increasing everywhere!