Check if you can write an equation relating the term number to the actual value
n1=3
n2=10 = 3+7
n3= 17 = n2+7 = n1+7+7 = n1 +2*7
n4= 24 = n1+3*7
so you will notice a pattern
for the x-th term
n_x =3+(x-1)*7
the 50th term would be n_50 = 3+(50-1) * 7
The unknown number is X;
x/6+2=9;
X/6=7;
X=42;
The answer is 42
Answer:
The correct answer is: 360.
Explanation:
First we can express 120 as follows:
2 * 2 * 2 * 3 * 5 = 120
You can get the above multiples as follows:
120/2 = 60
60/2 =30
30/2 = 15
15/3 = 5 (Since 15 cannot be divisible by 2, so we move to the next number)
5/5 = 1
Take all the terms in the denominator for 120, you would get: 2 * 2 * 2 * 3 * 5 --- (1)
Second we can express 360 as follows:
360/2 = 180
180/2 = 90
90/2 =45
45/3 = 15 (Since 45 cannot be divisible by 2, so we move to the next number)
15/3 = 5
5/5 = 1
Take all the terms in the denominator for 360, you would get: 2 * 2 * 2 * 3 * 3 * 5 --- (2)
Now in (1) and (2) consider the common terms once and multiple that with the remaining:
2*2*2*3*5 = Common between the two
3 = Remaining
Hence (2*2*2*3*5) * (3) = 360 = LCM (answer)
Answer:
-5.4c
Step-by-step explanation:
We're combining two "like" terms here.
It may make the problem easier to visualize if we write one of these terms over the other, as follows:
-2.6c
- 2.8c
----------
Adding, we get:
-2.6c
- 2.8c
----------
- 5.4c (answer)