Answer:
<em>Hox </em>Gene
Explanation:
First, you're question is very vital, there are many ways in classifying along with identifying all living organisms that includes; morphological analysis, molecular systematics (studying the similarities and differences of the genetic data such in the sequences of DNA, RNA, and rRNA ), homology, cladistics, etc. based on phylogenetic tree, which the study of the evolutionary among various species.
But through it said that all living organisms shared one common ancestor. However, what makes them different from one to another is the homeotic genes that called <em>Hox </em>Genes; which specify the fate of a particular segment or region of the body, meaning the number and arrangements of the<em> Hox</em> genes varies considerably among different types of animals.
For instance, Sponges have at least one homologous to<em> Hox</em> genes, also insects have nine or more <em>Hox </em>genes resulting in multiple <em>Hox </em>genes occur in a cluster in which the genes are close to each other along a chromosome. Therefore, increases in the number of<em> Hox</em> genes have been instrumental in the evolution of many animals species with greater complexity in body structure.
Overall, more <em>Hox</em> genes, more complexity in body structure resulting in the differences of their morphological structure.
Hope that answered your question!
Answer:
I'm pretty sure it is organ
The fulcrum is the point in any mechanical device where the moment due to weights is zero.
(Weight 1 x distance 1) - (weight 2 x distance 2) = 0
(1.7 Kg x 1.5 m ) - (weight 2 x 1.2 m) = 0
weight 2 = (1.7 Kg x 1.5 m ) / 1.2 m
= 2.1 Kg
Answer:
Released.
Explanation:
The bonds between the phosphates in ATP are very high energy, meaning that the bonds really really want to break because phosphates don't like being so close to each other. When the bonds do break, a ton of energy is released (think of it like a celebration that they aren't so close anymore).
Answer:
biotic and abiotic interactions
on gradpoint
Explanation: