Note: On the right-hand side, we eliminate the " 1 " ;
⇒ since any value(s), multiplied by " 1 " ,
result in those exact same value(s).
⇒ 32 units² = (a + 4) × a units² ;
⇔ (a + 4) × a units² = 32 units² ;
⇔ a (a + 4) units² = 32 units² ;
____________________________
To simplify the left-hand side of the equation,
use the distributive property of multiplication;
So we use: a(b + c) = ab + ac ;
⇒ So ; a(a + 4) = a*a + a*4 = a² + 4a.
⇒ We take our equation:
a (a + 4) units² = 32 units² ;
and replace the: " a (a + 4) " ;
with: " (a² + 4a) " ;
to get: " (a² + 4a) = 32 " .
Rewrite as:
" a² + 4a = 32 " ;
Now, subtract " 32 " from BOTH SIDES of the equation:
" a² + 4a − 32 = 32 − 32 " ;
TO GET:
" a² + 4a − 32 = 0 " .
___________________________
Now, let's factor the left hand side of the equation; and find the "zeros", or solutions for "a" , when the left-hand side of the equation is equal to "0" ;