In this problem, you are asked to find the area of the
trapezoid. The formula in finding the area of the trapezoid is:
A = [(a + b)/2] x h
Where a = base 1
b = base
2
h =
height
Substituting the given measurements to the formula:
A = [(1.7 m + 6.7 m) / 2] x 5 m
A = (8.4 m / 2) x 5 m
A = 4.2 m x 5 m
A = 21 m^2
Therefore, the area of the trapezoid is 21 square meters.
Answer:
A sample of 18 is required.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 1.88.
Now, find the margin of error M as such
In which
is the standard deviation of the population and n is the size of the sample.
A previous study indicated that the standard deviation was 2.2 days.
This means that 
How large a sample must be selected if the company wants to be 92% confident that the true mean differs from the sample mean by no more than 1 day?
This is n for which M = 1. So



Rounding up:
A sample of 18 is required.
Answer:
A. -4 + 6i
Step-by-step explanation:
Cause as we can see... (-2 - 2i)+(10-4i)
We get when we multiply 2x2=4i
Next 10-4=6
Hope it helped u
There is a multiple zero at 0 (which means that it touches there), and there are single zeros at -2 and 2 (which means that they cross). There is also 2 imaginary zeros at i and -i.
You can find this by factoring. Start by pulling out the greatest common factor, which in this case is -x^2.
-x^6 + 3x^4 + 4x^2
-x^2(x^4 - 3x^2 - 4)
Now we can factor the inside of the parenthesis. You do this by finding factors of the last number that add up to the middle number.
-x^2(x^4 - 3x^2 - 4)
-x^2(x^2 - 4)(x^2 + 1)
Now we can use the factors of two perfect squares rule to factor the middle parenthesis.
-x^2(x^2 - 4)(x^2 + 1)
-x^2(x - 2)(x + 2)(x^2 + 1)
We would also want to split the term in the front.
-x^2(x - 2)(x + 2)(x^2 + 1)
(x)(-x)(x - 2)(x + 2)(x^2 + 1)
Now we would set each portion equal to 0 and solve.
First root
x = 0 ---> no work needed
Second root
-x = 0 ---> divide by -1
x = 0
Third root
x - 2 = 0
x = 2
Forth root
x + 2 = 0
x = -2
Fifth and Sixth roots
x^2 + 1 = 0
x^2 = -1
x = +/- 
x = +/- i