All you need to do is divide -1/2 onto the other side.
-1/2x<-12
-12/ (-1/2)= 6 (a negative and a negative equals a positive)
Also, since you are dividing a negative, you flip the sign.
x>6
I hope this helps!
~cupcake
Let's represent the two numbers by x and y. Then xy=60. The smaller number here is x=y-7.
Then (y-7)y=60, or y^2 - 7y - 60 = 0. Use the quadratic formula to (1) determine whether y has real values and (2) to determine those values if they are real:
discriminant = b^2 - 4ac; here the discriminant is (-7)^2 - 4(1)(-60) = 191. Because the discriminant is positive, this equation has two real, unequal roots, which are
-(-7) + sqrt(191)
y = -------------------------
-2(1)
and
-(-7) - sqrt(191)
y = ------------------------- = 3.41 (approximately)
-2(1)
Unfortunately, this doesn't make sense, since the LCM of two numbers is generally an integer.
Try thinking this way: If the LCM is 60, then xy = 60. What would happen if x=5 and y=12? Is xy = 60? Yes. Is 5 seven less than 12? Yes.
He had 40 pencils left after he gave away 8, so originally he had 40 + 8 pencils, which is 48.
Now, he bought 4 packages, which had a total of 48 pencils, so divide 48 by 4, which is 12. He had 12 pencils in each package.
To determine the solution arithmetically, first add 8 to 40, then divide 48 by 4.
To determine the solution algebraically, set up and solve the equation 40 = 4x - 8.
Each package contained 12 pencils.
Hope this helps
The answer is 1/r to the power of 9