1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
10

PLZ HELP! MATH

Mathematics
2 answers:
Dmitry [639]3 years ago
6 0
The third one I think
NNADVOKAT [17]3 years ago
3 0

the answer is a dilation and a rotation because the rotation will make it stand u in the same way as the the other one and the dilation will make it bigger


HOPE THIS HELPS : )

You might be interested in
seven times a number is twelve more than three times the number. write an equation, this is urgent! pls hurry up!
egoroff_w [7]

Answer:

n=3

Step-by-step explanation:

7n=12+3n

7 0
2 years ago
Read 2 more answers
An Epson inkjet printer ad advertises that the black ink cartridge will provide enough ink for an average of 245 pages. Assume t
Neko [114]

Answer:

35.2% probability that the sample mean will be 246 pages or more

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

\mu = 245 \sigma = 15, n = 33, s = \frac{15}{\sqrt{33}} = 2.61

What the probability that the sample mean will be 246 pages or more?

This is 1 subtracted by the pvalue of Z when X = 246. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{246 - 245}{2.61}

Z = 0.38

Z = 0.38 has a pvalue of 0.6480.

1 - 0.6480 = 0.3520

35.2% probability that the sample mean will be 246 pages or more

4 0
3 years ago
Based on this graph, what would the cost to refill 50 bottles
Elis [28]

Answer:

175

Step-by-step explanation:

for 10 water bottles its 35 dollars so you multiply 10 by 5 and its 50. so you multiply 35 by 5 and get 175.

3 0
3 years ago
Read 2 more answers
If Ill m, solve for x.<br> (4x - 7)<br> (7x-61)<br> X =
Mars2501 [29]
4x-7=7x-61
-7=3x-61
54=3x
Answer
X=18
4 0
2 years ago
Please Help! This is a trigonometry question.
liraira [26]
\large\begin{array}{l} \textsf{From the picture, we get}\\\\ \mathsf{tan\,\theta=\dfrac{2}{3}}\\\\ \mathsf{\dfrac{sin\,\theta}{cos\,\theta}=\dfrac{2}{3}}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\qquad\mathsf{(i)} \end{array}


\large\begin{array}{l} \textsf{Square both sides of \mathsf{(i)} above:}\\\\ \mathsf{(3\,sin\,\theta)^2=(2\,cos\,\theta)^2}\\\\ \mathsf{9\,sin^2\,\theta=4\,cos^2\,\theta}\qquad\quad\textsf{(but }\mathsf{cos^2\theta=1-sin^2\,\theta}\textsf{)}\\\\ \mathsf{9\,sin^2\,\theta=4\cdot (1-sin^2\,\theta)}\\\\ \mathsf{9\,sin^2\,\theta=4-4\,sin^2\,\theta}\\\\ \mathsf{9\,sin^2\,\theta+4\,sin^2\,\theta=4} \end{array}

\large\begin{array}{l} \mathsf{13\,sin^2\,\theta=4}\\\\ \mathsf{sin^2\,\theta=\dfrac{4}{13}}\\\\ \mathsf{sin\,\theta=\sqrt{\dfrac{4}{13}}}\\\\ \textsf{(we must take the positive square root, because }\theta \textsf{ is an}\\\textsf{acute angle, so its sine is positive)}\\\\ \mathsf{sin\,\theta=\dfrac{2}{\sqrt{13}}} \end{array}

________


\large\begin{array}{l} \textsf{From (i), we find the value of }\mathsf{cos\,\theta:}\\\\ \mathsf{3\,sin\,\theta=2\,cos\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{2}\,sin\,\theta}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\diagup\!\!\!\! 2}\cdot \dfrac{\diagup\!\!\!\! 2}{\sqrt{13}}}\\\\ \mathsf{cos\,\theta=\dfrac{3}{\sqrt{13}}}\\\\ \end{array}

________


\large\begin{array}{l} \textsf{Since sine and cosecant functions are reciprocal, we have}\\\\ \mathsf{sin\,2\theta\cdot csc\,2\theta=1}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{sin\,2\theta}\qquad\quad\textsf{(but }}\mathsf{sin\,2\theta=2\,sin\,\theta\,cos\,\theta}\textsf{)}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\,sin\,\theta\,cos\,\theta}}\\\\ \mathsf{csc\,2\theta=\dfrac{1}{2\cdot \frac{2}{\sqrt{13}}\cdot \frac{3}{\sqrt{13}}}} \end{array}

\large\begin{array}{l} \mathsf{csc\,2\theta=\dfrac{~~~~1~~~~}{\frac{2\cdot 2\cdot 3}{(\sqrt{13})^2}}}\\\\ \mathsf{csc\,2\theta=\dfrac{~~1~~}{\frac{12}{13}}}\\\\ \boxed{\begin{array}{c}\mathsf{csc\,2\theta=\dfrac{13}{12}} \end{array}}\qquad\checkmark \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2150237


\large\textsf{I hope it helps.}


Tags: <em>trigonometry trig function cosecant csc double angle identity geometry</em>

</span>
8 0
3 years ago
Other questions:
  • 19. Marianna wants to buy a new tennis racket that
    11·1 answer
  • John's parents ask him to eat 75% of the brussels sprouts on his plate at dinner. John eats 9 brussels sprouts. How many brussel
    8·1 answer
  • Find the magnitude of the vector from the origin to (-7, -5) and write the vector as the sum of unit vectors.
    12·1 answer
  • a plot of land is rectangular and has an area of x^2-5x-24m^2 . the length is x+3m. Find the width of the plot.
    14·1 answer
  • Which statement is a counterexample to the statement "If x is a prime number, then x is an odd number?"
    12·1 answer
  • What is the value of x in f(x)= (x-3)(x+2)?
    12·1 answer
  • Simplify 6<br> 06<br> 7/10<br> 67<br> ( 125<br> 143
    13·1 answer
  • Find the volume and round to the nearest whole number
    9·1 answer
  • Which is equivalent to tan θ?
    10·1 answer
  • Solve the inequalities by graphing. Select the correct graph. 2x - y &gt; 4 2x - y &lt; -2
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!