Answer:
4.214 × 10^23 molecules.
Explanation:
Number of molecules in a substance can be calculated by multiplying the number of moles in that substance by Avagadro's number, which is 6.02 × 10^23.
That is, no. of molecule = n × Avagadro constant
In this case, there are 0.7 moles of fructose. Hence;
number of molecules = 0.7 × 6.02 × 10^23
no. of molecule = 4.214 × 10^23 molecules.
Answer:
Erosion is the transportation of sediment at the Earth's surface. 4 agents move sediment: Water, Wind, Glaciers, and Mass Wasting (gravity).
Explanation:
<h2><u>Full Question:</u></h2>
In hemoglobin, a single amino acid change at position 6 from Glu to Val has major consequences on hemoglobin structure that makes the molecule defective leading to sickle cell anemia. Predict whether the following hypothetical change would or would not have a major effect at position 6. Briefly explain (1-2 sentences). Glu to Leu Hint: Look at the structures of the R groups and consider their chemical properties
<h2><u>Answer:</u></h2>
The structure of the haemoglobin, hence the RBC won't be same as normal.
<h3><u>Explanation:</u></h3>
Both the leucine and glutamic acid are alpha amino acids which have an alpha carboxylic acid group and an alpha amino group. The variable in case of glutamic acid is propyl acid while the variable in case of leucine is isobutyl.
The glutamic acid is the normal amino acid of the 6th position of Beta chain of hemoglobin. Its an acid group, so can form bonds with another base inside the haemoglobin, or can form other hydrogen bonds. But the isobutyl group is an alkyl group. So it doesn't have that much effect in the recovering the structure, and sickle cell anemia prevails.
When you add salt to water, you lower to freezing point of the substance.
So for example, normal water freezes at 0°C. But water with salt in it won't freeze at 0°C, because its freezing point is lowered.
In answer to the question. It takes longer for water with salt in it to freeze because the substance requires a lower temperature than normal water to freeze.