Answer:
(a) The mean of <em>X</em> is 2.
(b) The variance <em>X</em> is
<em>.</em>
Step-by-step explanation:
The random variable <em>X</em> defined as follows:
<em>X</em> = heads, then <em>X </em>follows Uniform (0, 1).
<em>X</em> = tails, then <em>X </em>follows Uniform (3, 4).
(a)
The expected value of a Uniform random variable U (a, b) is:

Compute the expected value of <em>X </em>= heads as follows:

Compute the expected value of <em>X </em>= tails as follows:

Compute the mean of <em>X</em> as follows:

Thus, the mean of <em>X</em> is 2.
(b)
Compute the variance of <em>X</em> as follows:
![V(X)=\frac{1}{2}\int\limits^{1}_{0} {\frac{1}{1-0}[X-E(X)]^{2}} \, dx +\frac{1}{2}\int\limits^{4}_{3} {\frac{1}{4-3}[X-E(X)]^{2}} \, dx \\=\frac{1}{2}\int\limits^{1}_{0} {[x-2]^{2}} \, dx +\frac{1}{2}\int\limits^{4}_{3} {[x-2]^{2}} \, dx \\=\frac{1}{2}[\frac{(x-2)^{3}}{3}]^{1}_{0}+\frac{1}{2}[\frac{(x-2)^{3}}{3}]^{4}_{3}\\=(\frac{1}{2}\times\frac{7}{3})+(\frac{1}{2}\times\frac{7}{3})\\=\frac{7}{3}](https://tex.z-dn.net/?f=V%28X%29%3D%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5E%7B1%7D_%7B0%7D%20%7B%5Cfrac%7B1%7D%7B1-0%7D%5BX-E%28X%29%5D%5E%7B2%7D%7D%20%5C%2C%20dx%20%2B%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5E%7B4%7D_%7B3%7D%20%7B%5Cfrac%7B1%7D%7B4-3%7D%5BX-E%28X%29%5D%5E%7B2%7D%7D%20%5C%2C%20dx%20%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5E%7B1%7D_%7B0%7D%20%7B%5Bx-2%5D%5E%7B2%7D%7D%20%5C%2C%20dx%20%2B%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5E%7B4%7D_%7B3%7D%20%7B%5Bx-2%5D%5E%7B2%7D%7D%20%5C%2C%20dx%20%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Cfrac%7B%28x-2%29%5E%7B3%7D%7D%7B3%7D%5D%5E%7B1%7D_%7B0%7D%2B%5Cfrac%7B1%7D%7B2%7D%5B%5Cfrac%7B%28x-2%29%5E%7B3%7D%7D%7B3%7D%5D%5E%7B4%7D_%7B3%7D%5C%5C%3D%28%5Cfrac%7B1%7D%7B2%7D%5Ctimes%5Cfrac%7B7%7D%7B3%7D%29%2B%28%5Cfrac%7B1%7D%7B2%7D%5Ctimes%5Cfrac%7B7%7D%7B3%7D%29%5C%5C%3D%5Cfrac%7B7%7D%7B3%7D)
Thus, the variance <em>X</em> is
<em>.</em>