Step-by-step explanation:
![A=\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D)
![B=\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D)
![C=\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]](https://tex.z-dn.net/?f=C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D)
![D=\left[\begin{array}{ccc}-2&3&4\\0&-2&1\\3&4&-1\end{array}\right]](https://tex.z-dn.net/?f=D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%264%5C%5C0%26-2%261%5C%5C3%264%26-1%5Cend%7Barray%7D%5Cright%5D)
![1.\\A+B=\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]+\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]=\left[\begin{array}{ccc}3+4&1+1\\5+6&7+0\end{array}\right]=\left[\begin{array}{ccc}7&2\\11&7\end{array}\right]](https://tex.z-dn.net/?f=1.%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%2B4%261%2B1%5C%5C5%2B6%267%2B0%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%262%5C%5C11%267%5Cend%7Barray%7D%5Cright%5D)
![2.\\B-A=\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]-\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]=\left[\begin{array}{ccc}4-3&1-1\\6-5&0-7\end{array}\right]=\left[\begin{array}{ccc}1&0\\1&-7\end{array}\right]](https://tex.z-dn.net/?f=2.%5C%5CB-A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-3%261-1%5C%5C6-5%260-7%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%26-7%5Cend%7Barray%7D%5Cright%5D)
![3.\\3C=3\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]=\left[\begin{array}{ccc}(3)(-2)&(3)(3)&(3)(1)\\(3)(-1)&(3)(0)&(3)(4)\end{array}\right]=\left[\begin{array}{ccc}-6&9&3\\-3&0&12\end{array}\right]](https://tex.z-dn.net/?f=3.%5C%5C3C%3D3%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%283%29%28-2%29%26%283%29%283%29%26%283%29%281%29%5C%5C%283%29%28-1%29%26%283%29%280%29%26%283%29%284%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-6%269%263%5C%5C-3%260%2612%5Cend%7Barray%7D%5Cright%5D)
![4.\\C\cdot D=\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]\cdot\left[\begin{array}{ccc}-2&3&4\\0&-2&1\\3&4&-1\end{array}\right]\\\\=\left[\begin{array}{ccc}(-2)(-2)+(3)(0)+(1)(3)&(-2)(3)+(3)(-2)+(1)(4)&(-2)(4)+(3)(1)+(1)(-1)\\(-1)(-2)+(0)(0)+(4)(3)&(-1)(3)+(0)(-2)+(4)(4)&(-1)(4)+(0)(1)+(4)(-1)\end{array}\right]\\=\left[\begin{array}{ccc}7&-8&-6\\14&13&-8\end{array}\right]](https://tex.z-dn.net/?f=4.%5C%5CC%5Ccdot%20D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D%5Ccdot%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%264%5C%5C0%26-2%261%5C%5C3%264%26-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-2%29%28-2%29%2B%283%29%280%29%2B%281%29%283%29%26%28-2%29%283%29%2B%283%29%28-2%29%2B%281%29%284%29%26%28-2%29%284%29%2B%283%29%281%29%2B%281%29%28-1%29%5C%5C%28-1%29%28-2%29%2B%280%29%280%29%2B%284%29%283%29%26%28-1%29%283%29%2B%280%29%28-2%29%2B%284%29%284%29%26%28-1%29%284%29%2B%280%29%281%29%2B%284%29%28-1%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%26-8%26-6%5C%5C14%2613%26-8%5Cend%7Barray%7D%5Cright%5D)

The answer is 16.55
Divide $99.30 by 6 and you get your answer!
I hope this helps :)
Answer:
I'm gonna go with D
Step-by-step explanation:
If it's wrong meh bad
Let the weight of triangle be x units. You are given that the weight of square is 1 unit.
1) On the left side of the balanced beam you can see 3 triangles and 5 squares. The weight on left side is 3·x+5·1=3x+5 units.
2) On the right side of the balanced beam you can see 2 triangles and 7 squares. The weight on right side is 2·x+7·1=2x+7 units.
3) If the whole system is balanced, then the weights on left and right sides are equal:
3x+5=2x+7.
Solve this equation:
3x-2x=7-5,
x=2 units.
Answer: option A
Answer:
.
Step-by-step explanation:
We have been given an expression and we are asked to simplify our given expression.

Using order of operations (PEMDAS) we will remove parenthesis first.
After removing parenthesis our expression will be,

After canceling out 1 with -1 we will get,

So our given expression simplifies to
.
Let us write our expression in standard form. Since our expression is a polynomial and to write any polynomial in standard form, we write each term in order of degree, from highest to lowest, left to right.
Upon putting our polynomial into standard form we will get,

Therefore, after simplifying and putting our given expression in standard form we get our final expression as:
.