Yes I can help you with the math problem what is it I take AP classes and CC ( college courses ) too
Answer:
1. Write both ratios as fractions and reduce them completely. If they are the same fraction, the ratios form a proportion.
2. Write both ratios as fractions. Do the cross products by multiplying the denominator of each fraction by the numerator of the other fraction. If the cross products are equal, the ratios form a proportion.
- Quadratic Formula:
, with a = x^2 coefficient, b = x coefficient, and c = constant.
Firstly, starting with the y-intercept. To find the y-intercept, set the x variable to zero and solve as such:

<u>Your y-intercept is (0,-51).</u>
Next, using our equation plug the appropriate values into the quadratic formula:

Next, solve the multiplications and exponent:

Next, solve the addition:

Now, simplify the radical using the product rule of radicals as such:
- Product Rule of Radicals: √ab = √a × √b
√1224 = √12 × √102 = √2 × √6 × √6 × √17 = 6 × √2 × √17 = 6√34

Next, divide:

<u>The exact values of your x-intercepts are (-4 + √34, 0) and (-4 - √34, 0).</u>
Now to find the approximate values, solve this twice: once with the + symbol and once with the - symbol:

<u>The approximate values of your x-intercepts (rounded to the hundredths) are (1.83,0) and (-9.83,0).</u>
As you know, to get the inverse of any expression, we start off by switching the variables about and then solving for "y",
Sorry for the poor graph. The solution to the inequality is