Answer:
Part A


Part B
Geometric Sequence
Part C
1/4,3/4,5/4,7/4,9/4

Part D:

Step-by-step explanation:
By definition, an Arithmetic Sequence holds the same difference between each following number.
Part A

<u>Explicit Formula</u>
To write an explicit formula is to write it as function.

<u>Recursive Formula</u>
To write it as recursive formula, is to write it as recurrence given to some restrictions:

Part B

Geometric Sequence, since 2*2=4 8*2=16 and 16*2=32 and 8+2=10 8+16=24
Part C

Arithmetic Sequence, difference

<u>Explicit Formula:</u>

<u>Recursive Formula</u>

Part D
(1.1,1.5,1.9,2.3,2.7) Arithmetic Sequence, difference d=0.4
<u>Explicit formula</u>

<u>Recursive Formula</u>

Answer:
4
Step-by-step explanation:
Answer: 1,365 possible special pizzas
Step-by-step explanation:
For the first topping, there are 15 possibilities, for the second topping, there are 14 possibilities, for the third topping, there are 13 possibilities, and for the fourth topping, there are 12 possibilities. This is how you find the number of possible ways.
15 * 14 * 13 * 12 = 32,760
Now, you need to divide that by the number of toppings you are allowed to add each time you add a topping.
4 * 3 * 2 * 1 = 24
32,760 / 24 = 1,365
There are 1,365 possible special pizzas
Answer:
the first one is the right answer i had the test