let's firstly convert the mixed fraction to improper fraction and then take it from there, keeping in mind that the whole is "x".
![\stackrel{mixed}{5\frac{5}{6}}\implies \cfrac{5\cdot 6+5}{6}\implies \stackrel{improper}{\cfrac{35}{6}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{7}{3}x~~ = ~~5\frac{5}{6}\implies \cfrac{7}{3}x~~ = ~~\cfrac{35}{6}\implies 42x=105\implies x=\cfrac{105}{42} \\\\\\ x=\cfrac{21\cdot 5}{21\cdot 2}\implies x=\cfrac{21}{21}\cdot \cfrac{5}{2}\implies x=1\cdot \cfrac{5}{2}\implies x=2\frac{1}{2}](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B5%5Cfrac%7B5%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B5%5Ccdot%206%2B5%7D%7B6%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B35%7D%7B6%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B7%7D%7B3%7Dx~~%20%3D%20~~5%5Cfrac%7B5%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B7%7D%7B3%7Dx~~%20%3D%20~~%5Ccfrac%7B35%7D%7B6%7D%5Cimplies%2042x%3D105%5Cimplies%20x%3D%5Ccfrac%7B105%7D%7B42%7D%20%5C%5C%5C%5C%5C%5C%20x%3D%5Ccfrac%7B21%5Ccdot%205%7D%7B21%5Ccdot%202%7D%5Cimplies%20x%3D%5Ccfrac%7B21%7D%7B21%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D1%5Ccdot%20%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D2%5Cfrac%7B1%7D%7B2%7D)
Rearrange the ODE as


Take

, so that

.
Supposing that

, we have

, from which it follows that


So we can write the ODE as

which is linear in

. Multiplying both sides by

, we have

![\dfrac{\mathrm d}{\mathrm dx}\bigg[e^{x^2}u\bigg]=x^3e^{x^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5Be%5E%7Bx%5E2%7Du%5Cbigg%5D%3Dx%5E3e%5E%7Bx%5E2%7D)
Integrate both sides with respect to

:
![\displaystyle\int\frac{\mathrm d}{\mathrm dx}\bigg[e^{x^2}u\bigg]\,\mathrm dx=\int x^3e^{x^2}\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5Be%5E%7Bx%5E2%7Du%5Cbigg%5D%5C%2C%5Cmathrm%20dx%3D%5Cint%20x%5E3e%5E%7Bx%5E2%7D%5C%2C%5Cmathrm%20dx)

Substitute

, so that

. Then

Integrate the right hand side by parts using



You should end up with



and provided that we restrict

, we can write
1. The withdrawals adds up to 291+99+150+12= 552
500-552= -52
2. The bus pass which cost $150.
3.1000-552= $448 left
4.1000-552-300-150=$-2 left. Withdrawal had happened.
Answer:
Difference of squares method is a method that is used to evaluate the difference between two perfect squares.
For example, given an algebraic expression in the form:
can be factored as follows:
From the given expressions, the only expression containing two perfect squares with the minus sign in the middle is the expression in option A.
i.e.
which can be factored as follows:
.
Answer:
MQ = 16.4
By the <u>Parallelogram Diagonals Theorem</u> , MP = <u>PQ</u>
So MQ = 2 · <u>MP</u>
<u />
Step-by-step explanation:
<u>Parallelogram Diagonals Theorem</u>
The diagonals of a parallelogram bisect each other, i.e. they divide each other into <em>two equal parts</em>.
P is the point of intersection of the diagonals.
Therefore, MP = PQ and LP = PN
If MP = 8.2, then PQ = 8.2
⇒ MQ = 8.2 + 8.2 = 16.4