Amount of money received when x tickets are sold=$Y
Number of tickets sold=X
Slope of line= 
And , y- intercept = 8
Equation of line having slope m and y-intercept c is given by,
y = m x + c,
Expressing the above statement in terms of linear equation in two variable i.e a line is
Y =
X + 8
Answer:
((2 x + 1) (4 x^2 - 2 x + 1))/8
Step-by-step explanation:
Factor the following:
x^3 + 1/8
Put each term in x^3 + 1/8 over the common denominator 8: x^3 + 1/8 = (8 x^3)/8 + 1/8:
(8 x^3)/8 + 1/8
(8 x^3)/8 + 1/8 = (8 x^3 + 1)/8:
(8 x^3 + 1)/8
8 x^3 + 1 = (2 x)^3 + 1^3:
((2 x)^3 + 1^3)/8
Factor the sum of two cubes. (2 x)^3 + 1^3 = (2 x + 1) ((2 x)^2 - 2 x + 1^2):
((2 x + 1) ((2 x)^2 - 2 x + 1^2))/8
1^2 = 1:
((2 x + 1) ((2 x)^2 - 2 x + 1))/8
Multiply each exponent in 2 x by 2:
((2 x + 1) (2^2 x^2 - 2 x + 1))/8
2^2 = 4:
Answer: ((2 x + 1) (4 x^2 - 2 x + 1))/8
We'll first we need to know the in 1 cup there is 16 tablespoon.
so we could multiply we need 2 1/2 cup so that is 16 (1cup) + 16 (1cup) +8 (1/2 cup)= 40 tablespoons... and 1 tablespoon is 1.5 grams of fat then we multiply 40 times 1.5 .... This is equal to 60 grams fat
So there is 60 grams of fat in 2 1/5 cups of hummus.
<span>v = 45 km/hr
u = 72 km/hr
Can't sketch the graph, but can describe it.
The Y-axis will be the distance. At the origin it will be 0, and at the highest point it will have the value of 120. The X-axis will be time in minutes. At the origin it will be 0 and at the rightmost point, it will be 160. The graph will consist of 3 line segments. They are
1. A segment from (0,0) to (80,60)
2. A segment from (80,60) to (110,60)
3. A segment from (110,60) to (160,120)
The motorist originally intended on driving for 2 2/3 hours to travel 120 km. So divide the distance by the time to get the original intended speed.
120 km / 8/3 = 120 km * 3/8 = 360/8 = 45 km/hr
After traveling for 80 minutes (half of the original time allowed), the motorist should be half of the way to the destination, or 120/2 = 60km. Let's verify that.
45 * 4/3 = 180/3 = 60 km.
So we have a good cross check that our initial speed was correct. v = 45 km/hr
Now having spent 30 minutes fixing the problem, out motorist now has 160-80-30 = 50 minutes available to travel 60 km. So let's divide the distance by time:
60 / 5/6 = 60 * 6/5 = 360/5 = 72 km/hr
So the 2nd leg of the trip was at a speed of 72 km/hr</span>
I think if I had to guess the answer should be D 140