Answer:

Step-by-step explanation:
<u>Recursive sequence
</u>
In a recursive sequence formula, each term
is computed as a function of one or more previous terms. In the formula

n is the number of the term we want to calculate. If n=8, then the formula becomes

We can see
is the previous term. It means we need
to be able to compute
. But we also need
to compute
and so on until some known data is reached. The question provides five terms,




Answer:
300 feet
Step-by-step explanation:
Answer:
Lower limit: 113.28
Upper limit: 126.72
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Middle 60%
So it goes from X when Z has a pvalue of 0.5 - 0.6/2 = 0.2 to X when Z has a pvalue of 0.5 + 0.6/2 = 0.8
Lower limit
X when Z has a pvalue of 0.20. So X when 




Upper limit
X when Z has a pvalue of 0.80. So X when 




B because the distance between p to b is 1/4 of the line and the distance between p to a is 3/4 of the line
Answer:
about 2949 feet
Step-by-step explanation:
The geometry of the situation can be modeled by a right triangle. The height of the cliff can be taken to be the side opposite the given angle, and the distance to the coyote will be the side adjacent to the given angle. The relation between these values is the trig function ...
Tan = Opposite/Adjacent
__
<h3>setup</h3>
Filling in the known values, we have ...
tan(6°) = (310 ft)/(distance to coyote)
<h3>solution</h3>
Multiplying by (distance to coyote)/tan(6°) gives ...
distance to coyote = (310 ft)/tan(6°) ≈ 310/0.105104 ft
distance to coyote ≈ 2949.453 ft
The coyote is about 2949 feet from the base of the cliff.