<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>B</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>hope </em><em>it</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>helpful</em><em> </em><em>to</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>
first off let's notice that the height is 11 meters and the volume of the cone is 103.62 cubic centimeters, so let's first convert the height to the corresponding unit for the volume, well 1 meters is 100 cm, so 11 m is 1100 cm.
![\textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=\stackrel{cm^3}{103.62}\\ h=\stackrel{cm}{1100} \end{cases}\implies 103.62=\cfrac{\pi r^2 (1100)}{3} \\\\\\ 3(103.62)=1100\pi r^2\implies \cfrac{3(103.62)}{1100\pi }=r^2 \\\\\\ \sqrt{\cfrac{3(103.62)}{1100\pi }}=r\implies \stackrel{cm}{0.00510199305952} \approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D%5Cstackrel%7Bcm%5E3%7D%7B103.62%7D%5C%5C%20h%3D%5Cstackrel%7Bcm%7D%7B1100%7D%20%5Cend%7Bcases%7D%5Cimplies%20103.62%3D%5Ccfrac%7B%5Cpi%20r%5E2%20%281100%29%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%203%28103.62%29%3D1100%5Cpi%20r%5E2%5Cimplies%20%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%3Dr%5E2%20%5C%5C%5C%5C%5C%5C%20%5Csqrt%7B%5Ccfrac%7B3%28103.62%29%7D%7B1100%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B0.00510199305952%7D%20%5Capprox%20r)
D. because for every hour it goes down 5 degrees and since there is a 1 hour gap in between 7 am and 9 am
Answer:
Step-by-step explanation:
x² - 2x + y² - 4y - 4 = 0
x² - 2x + y² - 4y = 4
complete the squares
(x² - 2x + x₀) + (y² - 4y + y₀) = 4
the unknown number will be the square of half of the x¹ coefficient
(x² - 2x + 1) + (y² - 4y + 4) = 4 + 1 + 4
(x - 1)² + (y - 2)² = 9
This tells us that the circle is centered on (1, 2)
Which is also a point on the diameter
2x - y + a = 0
a = y - 2x
a = 2 - 2(1)
a = 0
Answer:
k = 2
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = - 3x + 5 ← is in slope- intercept form
with slope m = - 3
Parallel lines have equal slopes, thus the 2 points have a slope of - 3
calculate the slope using the slope formula and equate to - 3
m = 
with (x₁, y₁ ) = (4, - 1) and (x₂, y₂ ) = (k, 5)
m =
=
= - 3 ( multiply both sides by (k - 4) )
- 3(k - 4) = 6 ( divide both sides by - 3 )
k - 4 = - 2 ( add 4 to both sides )
k = 2