Answer:
Step-by-step explani belive you add it if it is improper then simplify hope it helps
From the first equation,
x+5 = 3(y+5)
x = 3y + 15 - 5
Now substitue x in the second equation with (3y +15 - 5).
x-5 = 7(y-5)
(3y+15-5) - 5 = 7(y-5)
3y +5 = 7y - 35
-4y = - 40
y = 10
Since y is 10, and x is (3y +15 - 5),
x = 30 + 15 - 5 = 40
we know that
<u>The triangle inequality theorem</u> states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side
so
Let
a,b,c------> the length sides of a triangle
The theorem states that three conditions must be met
<u>case 1)</u>

<u>case 2)</u>

<u>case3)</u>

therefore
<u>the answer is the option</u>
B. The sum of the lengths of any two sides of a triangle is greater than the length of the third side.