Answer:
  
Step-by-step explanation:
GIVEN: A space telescope on a mountaintop is housed inside of a cylindrical building with a hemispheric dome. If the circumference of the dome is  , and the total height of the building up to the top of the dome is
, and the total height of the building up to the top of the dome is  .
.
TO FIND: what is the approximate total volume of the building.
SOLUTION:
let the height of the mountaintop be 
As the dome hemispherical.
circumference of a hemisphere 
                                                     
                                                     
                                                     
total height of the building up to the top of the dome 


Volume of building 
                                 
as radius of mountain top is same as dome
putting values
                                  
      
                                
                                
Hence the total volume of the building is  
                                       
 
        
             
        
        
        
Answer:
Verified
Step-by-step explanation:
Let the 2x2 matrix A be in the form of:
![\left[\begin{array}{cc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D)
Where det(A) = ad - bc # 0 so A is nonsingular:
Then the transposed version of A is
![A^T = \left[\begin{array}{cc}a&c\\b&d\end{array}\right]](https://tex.z-dn.net/?f=A%5ET%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26c%5C%5Cb%26d%5Cend%7Barray%7D%5Cright%5D)
Then the inverted version of transposed A is
![(A^T)^{-1} = \frac{1}{ad - cb} \left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5ET%29%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20cb%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
The inverted version of A is:
![A^{-1} = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-b\\-c&d\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-b%5C%5C-c%26d%5Cend%7Barray%7D%5Cright%5D)
The transposed version of inverted A is:
![(A^{-1})^T = \frac{1}{ad - bc}\left[\begin{array}{cc}a&-c\\-b&d\end{array}\right]](https://tex.z-dn.net/?f=%28A%5E%7B-1%7D%29%5ET%20%3D%20%5Cfrac%7B1%7D%7Bad%20-%20bc%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26-c%5C%5C-b%26d%5Cend%7Barray%7D%5Cright%5D)
We can see that

So this theorem is true for 2 x 2 matrices
 
        
             
        
        
        
The mean of a dataset is the all members of the dataset added together and then divided by the number of members in the set. From your description of the number line, I've created a list of members.
16, 17, 17, 17, 17, 19, 19, 19, 19, 21, 22, 22, 23, 25
Adding all members of this set up produces the value 273. There are 14 members in the set, so 273 / 14 = 19.5. Thus, the mean of the set is 19.5