Answer:

Step-by-step explanation:
Here we can see that the parent function is
and the translated function is g(x). f(x) is a parabola.
Rule says that any factor if multiplied by f(x) is going to contract the graph towards the y axis and vice versa.
Similarly any factor if f(x) is divided by some factor it is going to be stretch the graph away from the y axis and vice versa.
Here we can see that the translated graph g(x) is stretched away from the y axis with reference to the parent function f(x). Hence as per he rule discussed above, we get a preliminary information that the parent function f(x) is being divided by some factor.
now we are given that


Where as
{as given in the graph}
Hence
at x=3 , f(x) = 9 and g(x) = 1 , and also we have discussed above that f(x) is divided by some factor. Hence 

The smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
What is the intermediate value theorem?
Intermediate value theorem is theorem about all possible y-value in between two known y-value.
x-intercepts
-x^2 + x + 2 = 0
x^2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1, x = 2
y intercepts
f(0) = -x^2 + x + 2
f(0) = -0^2 + 0 + 2
f(0) = 2
(Graph attached)
From the graph we know the smallest positive integer value that the intermediate value theorem guarantees a zero exists between 0 and a is 3
For proof, the zero exists when x = 2 and f(3) = -4 < 0 and f(0) = 2 > 0.
<em>Your question is not complete, but most probably your full questions was</em>
<em>Given the polynomial f(x)=− x 2 +x+2 , what is the smallest positive integer a such that the Intermediate Value Theorem guarantees a zero exists between 0 and a ?</em>
Thus, the smallest positive integer that the intermediate value theorem guarantees a zero exists between 0 and a is 3.
Learn more about intermediate value theorem here:
brainly.com/question/28048895
#SPJ4
52.8 is the answer.
Hope this helps!
I'm not sure if that's the correct method of finding that (it could be, I was just never shown that kind of method). What I did was multiply everything out, that way you have two numbers vs two equations. Then add those two numbers and turn that into scientific notation.