Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:

Step-by-step explanation:
Part A:
So the height is going to be x when you fold the sides up. So that's one part of the volume but for the width it was going to be 4 but since two corners were cut out with the length x the new width is going to be (4-2x). The same thing applies for the length which should be 8 inches but since two corners were removed with the length x it's now (8-2x)
v = x(4-2x)(8-2x)
Part B:
The volume can be graphed although there must be a domain restriction since the height, width, or length cannot be negative. So let's look at each part of the equation
so for the x in front it must be greater than 0 to make sense
for the (4-2x), the x must be less than 2 or else the width is negative.
for the (8-2x) the x must be less than 4 or else the length is negative
so the domain is going to be restricted to 0 < x < 2 so all the dimensions are greater than 0
By using a graphing calculator you can see the maximum of the given equation with the domain restrictions is 0.845 which gives a volume of 12.317
Answer:
the answer is $864 pls give brainliest
Step-by-step explanation:
Answer:
3280 square inches
Step-by-step explanation:
The surface area of square pyramid = 4* the area of the triangular side + the area of the square base.
TRIANGULAR SIDE
The pyramid has an isosceles triangular side of size, a=40 inches, b= 29 inches, c = 29 inches.
Surface area = sqrt{ s(s-a)(s-b)(s-c) }
Where s= (a+b+c)/2
S= (40+29+29)/2 = 49
Surface area = sqrt{ 49(49-40)(49-29)(49-29)}
Surface area = 420 square inches
SQUARE BASE
Area of a square = a²
Area = 40² = 1600 square inches
Surface area of the pyramid = 4*420 + 1600 = 1680 + 1600
Surface area = 3280 square inches.