Answer:

Explanation:
Apparent frequency that is received to the speeder is given as


here we know that

now we have


now the frequency that is received back from the speeder is given as



So difference is the frequency is given as


Answer:
a) V1=11.05m/s V2=92.07m/s V3=17.24m/s
b) KE = 16238.26J
Explanation:
For tangential speeds:



For the kinetic energy, it can be calculated as:

Where:



So,

KE=16238.26J
Answer:
- the power to the air is 850 MW
- mass flow rate of the air is 84577.11 kg/s
Explanation:
Given the data in the question;
Net power generated;
= 150 MW
Heat input;
= 1000 MW
Power to air = ?
For closed cycles
Power to air Q₀ = Heat input;
- Net power generated; 
we substitute
Power to air Q₀ = 1000 - 150
Q₀ = 850 MW
Therefore, the power to the air is 850 MW
given that ΔT = 10 °C
mass flow rate of air required will be;
⇒ Q₀ / CpΔT
we know that specific heat of air at p=c ; Cp = 1.005 kJ/kg.K
we substitute
⇒ ( 850 × 10³ ) / [ 1.005 × 10 ]
⇒ ( 850 × 10³ ) / 10.05
⇒ 84577.11 kg/s
Therefore, mass flow rate of the air is 84577.11 kg/s
Answer:
d) I and III only.
Explanation:
Let be
and
the masses of the two laboratory carts and let suppose that
. The expressions for each kinetic energy are, respectively:
and
.
After some algebraic manipulation, the following relation is constructed:

Since
, then
. That is to say,
.
The expressions for each linear momentum are, respectively:
and 
Since
, then
. Which proves that statement I is true.
According to the Impulse Theorem, the impulse needed by cart I is greater than impulse needed by cart II, which proves that statement II is false.
According to the Work-Energy Theorem, both carts need the same amount of work to stop them. Which proves that statement III is true.
1. The plant breaks down into bits
2. A dead plant falles to the ground
3 The bits become part of soil