Answer:
-6.44 m/s²
Explanation:
Given:
Δx = 60 m
v₀ = 27.8 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (27.8 m/s)² + 2a (60 m)
a = -6.44 m/s²
I believe the answer is C
Hope this helps :)
Electromagnetic waves are a type of
transverse wave. This wave does not
require media for travel. As the name
implies a wave, these waves indicate
electrical and magnetic properties. No
cost whatsoever happened to the wave. Electromagnetic waves work with the
laws of reflection and refraction. They
travel the straight line in a vacuum at a
speed of 3 x 108 ms-1. The intensity of
electromagnetic waves depends on the
strength of the electric field.
140 Jules. Is the correct answer
Answer:
Final Velocity = 4.9 m/s
Explanation:
We are given;. Initial velocity; u = 2 m/s
Constant Acceleration; a = 0.1 m/s²
Distance; s = 100 m
To find the final velocity(v), we will use one of Newton's equations of motion;
v² = u² + 2as
Plugging in the relevant values to give;
v² = 2² + 2(0.1 × 100)
v² = 4 + 20
v² = 24
v = √24
v = 4.9 m/s