Answer:
'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Explanation:
The question is incomplete, find the complete question in the comment section.
Concave mirrors is an example of a curved mirror. The outer surface of a concave mirror is always coated. On the concave mirror, we have what is called the central axis or principal axis which is a line cutting through the center of the mirror. The points located on this axis are the Pole, the principal focus and the centre of curvature. <em>The focus point is close to the curved mirror than the centre of curvature.</em>
<em></em>
During the formation of images, one of the incident rays (rays striking the plane surface) coming from the object and parallel to the principal axis, converges at the focus point after reflection because all incident rays striking the surface are meant to reflect out. <em>All incident light striking the surface all converges at a point on the central axis known as the focus.</em>
Based on the explanation above, it can be concluded that 'Incident rays that are parallel to the central axis are sent through a point on the near side of the mirror'.
Answer:
speed of the mass is 3.546106 m / s
Explanation:
given data
mass = 77.3 g = 77.3 ×
kg
spring constant k = 12.5 N/m
amplitude A = 38.9 cm = 38.9 ×
m
to find out
the speed of the mass
solution
we will apply here conservation energy that is
K.E + P.E = Total energy ..................1
so that Total energy = K.E max = P.E max
we know amplitude so we find out first P.E max that is
PE max = K.E + P.E
(1/2)kA² = (1/2)mv² + (1/2)kx²
kA^² = mv²+ kx²
so here v² will be
v² = k(A² - x²) / m
v = √[(k/m)×(A² - x²)] ............2
here x = (1/2)A so from from 2 equation
v = √[(k/m)×(A² - (A/2)²)]
v = √[(k/m)×(3/4×A²)]
now put all value
v = √[(12.5/ 77.3 ×
)×(3/4×(38.9 ×
)²)]
v = 3.546106 m / s
speed of the mass is 3.546106 m / s
Answer:
I cant fit the entire picture but this should help
Answer:
sound waves and water waves are completely different. water waves shakes energy over the surface of sea, while sound waves thump energy through the body of the air.
Ok ok ok ok ok ok I ok ok I I’m only on kn knkkkm I’m on