This is a ratio problem; the ratio of the length to width is constant (and therefore equal):
4 /6 = 15 / x
Now, with a ratio, we may do any allowable algebra operation: cross-multiply, invert both sides, multiply or divide both sides by the same amount, etc.
Let's cross-multiply:
4x = (15)(6)
x = 90/4
x = 22.5 in.
Answer:
Let the three consecutive integers be x,x+1,x+2
ATQ
x+2(x+2)+15=4(x+1)
=3x+19=4x+4
= x=15
..... Hence. The nos. Are 15,15+1=16 and 15+2=17
Step-by-step explanation:
Answer:
x = ![\frac{12y - 74}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B12y%20-%2074%7D%7B7%7D)
Step-by-step explanation:
12y = 75 + 5x + 2x - 1
combine like terms:
12y = 74 + 7x
subtract 74 from both sides:
7x = 12y - 74
divide both sides by 7:
x = ![\frac{12y - 74}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B12y%20-%2074%7D%7B7%7D)
Equation of a line that is perpendicular to given line is
.
Equation of a line that is parallel to given line is
.
Solution:
Given line
.
Slope of this line,
= ![\frac{4}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B7%7D)
![$\text{Slope of perpendicular line} = \frac{-1}{\text{Slope of the given line} }](https://tex.z-dn.net/?f=%24%5Ctext%7BSlope%20of%20perpendicular%20line%7D%20%3D%20%5Cfrac%7B-1%7D%7B%5Ctext%7BSlope%20of%20the%20given%20line%7D%20%7D)
![$m_2=\frac{-1}{m_1}](https://tex.z-dn.net/?f=%24m_2%3D%5Cfrac%7B-1%7D%7Bm_1%7D)
![$=\frac{-1}{\frac{4}{7} }](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B-1%7D%7B%5Cfrac%7B4%7D%7B7%7D%20%7D)
Slope of perpendicular line, ![m_2=\frac{-7}{4}](https://tex.z-dn.net/?f=m_2%3D%5Cfrac%7B-7%7D%7B4%7D)
Passes through the point (–7, 5). Here
.
Point-slope formula:
![y-y_1=m(x-x_1)](https://tex.z-dn.net/?f=y-y_1%3Dm%28x-x_1%29)
![$y-(-7)=\frac{-7}{4} (x-5)](https://tex.z-dn.net/?f=%24y-%28-7%29%3D%5Cfrac%7B-7%7D%7B4%7D%20%28x-5%29)
![$y+7=\frac{-7}{4} x+\frac{35}{4}](https://tex.z-dn.net/?f=%24y%2B7%3D%5Cfrac%7B-7%7D%7B4%7D%20x%2B%5Cfrac%7B35%7D%7B4%7D)
Subtract 7 from both sides, we get
![$y=\frac{-7}{4} x+\frac{7}{4}](https://tex.z-dn.net/?f=%24y%3D%5Cfrac%7B-7%7D%7B4%7D%20x%2B%5Cfrac%7B7%7D%7B4%7D)
Equation of a line that is perpendicular to given line is
.
To find the parallel line:
Slopes of parallel lines are equal.
![m_1=m_3](https://tex.z-dn.net/?f=m_1%3Dm_3)
![$m_3=\frac{4}{7}](https://tex.z-dn.net/?f=%24m_3%3D%5Cfrac%7B4%7D%7B7%7D)
Passes through the point (–7, 5). Here
.
Point-slope formula:
![$y-(-7)=\frac{4}{7} (x-5)](https://tex.z-dn.net/?f=%24y-%28-7%29%3D%5Cfrac%7B4%7D%7B7%7D%20%28x-5%29)
![$y+7=\frac{4}{7} x-\frac{20}{7}](https://tex.z-dn.net/?f=%24y%2B7%3D%5Cfrac%7B4%7D%7B7%7D%20x-%5Cfrac%7B20%7D%7B7%7D)
Subtract 7 from both sides,
![$y=\frac{4}{7} x-\frac{69}{7}](https://tex.z-dn.net/?f=%24y%3D%5Cfrac%7B4%7D%7B7%7D%20x-%5Cfrac%7B69%7D%7B7%7D)
Equation of a line that is parallel to given line is
.