<em><u>An inequality that shows the distance Johnathan could of ran any day this week is:</u></em>

<em><u>Solution:</u></em>
Let "x" be the distance Johnathan can run any day of this week
Given that,
Johnathan ran 5 days this week. The most he ran in one day was 3.5 miles
Therefore,
Number of days ran = 5
The most he ran in 1 day = 3.5 miles
Thus, the maximum distance he ran in a week is given as:

The maximum distance he ran in a week is 17.5 miles
If we let x be the distance he can run any day of this week then, we get a inequality as:

If we let y be the total distance he can travel in a week then, we may express it as,

You're answer is D.
-3/-3(2)-9
1(2)-9
2-9
7
so it is D
Answer:
Step-by-step explanation:
no of days no of men
30 20
24 20
30/24=x/20
24 x=30*20
24x=600
x=600/24
x=25
therefore 5 more men are needed to complete the work in 24 days
The answer would be 893.4
Answer:
The maximum value of the table t(x) has a greater maximum value that the graph g(x)
Step-by-step explanation:
The table shows t(x) has two (2) x-intercepts: t(-3) = t(5) = 0. The graph shows g(x) has two (2) x-intercepts: g(1) = g(5) = 0. Neither function has fewer x-intercepts than the other.
The table shows the y-intercept of t(x) to be t(0) = 3. The graph shows the y-intercept of g(x) to be g(0) = -1. The y-intercepts are not the same, and that of t(x) is greater than that of g(x).
The table shows the maximum value of t(x) to be t(1) = 4. The graph shows the maximum value of g(x) to be g(3) = 2. Thus ...
the maximum value of t(x) is greater than the maximum value of g(x)