This is a differential equations problem. We are to work backwards and determine the function f(x) when given f "(x) and initial values.
<span>f ''(x) = 12x^2 + 6x − 4, when integrated with respect to x, yields:
x^3 x^2
f '(x) = 12------ + 6----- - 4x + C, or 4x^3 + 3x^2 - 4x + C, and
3 2
x^4 x^3 x^2
f(x) = 4------- + 3------- - 4------ + Cx + D, or f(x)=x^4 + x^3 - 2x^2 + Cx + D
4 3 2
Now, because f(0)=5, 5=0^4 + 0^3 -2(0)^2 + C(0) + D, so that D=5.
Determine D in the same manner: Let x=1 and find the value of C.
Then the solution, f(x), is x^4 + x^3 - 2x^2 + Cx + 5. Replace C with this value and then you'll have the desired function f(x).</span>
Answer:
W=7 and L=11
Step-by-step explanation:
We have two unknowns so we must create two equations.
First the problem states that length of a rectangle is 10 yd less than three times the width so: L= 3w-10
Next we are given the area so: L X W = 77
Then solve for the variable algebraically. It is just a system of equations.
3W^2 - 10W - 77 = 0
(3W + 11)(W - 7) = 0
W = -11/3 and/or W=7
Discard the negative solution as the width of the rectangle cannot be less then 0.
So W=7
Plug that into the first equation.
3(7)-10= 11 so L=11
Divide all of the ingredient amounts by 3 so that way it will be for two
Answer:
187.06 units²
Step-by-step explanation:
Area of kite:
½ × d1 × d2
½d1 = 18sin(30)
½d1 = 9
d1 = 18
d2 = 9/tan(60) + 18cos(30)
= 12sqrt(3)
Area = ½ × 18 × 12sqrt(3)
108sqrt(3) units²
187.0614872 units²