Answer: 72
Step-by-step explanation: Its in the middle
Answer:
The rocket will reach its maximum height after 6.13 seconds
Step-by-step explanation:
To find the time of the maximum height of the rocket differentiate the equation of the height with respect to the time and then equate the differentiation by 0 to find the time of the maximum height
∵ y is the height of the rocket after launch, x seconds
∵ y = -16x² + 196x + 126
- Differentiate y with respect to x
∴ y' = -16(2)x + 196
∴ y' = -32x + 196
- Equate y' by 0
∴ 0 = -32x + 196
- Add 32x to both sides
∴ 32x = 196
- Divide both sides by 32
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
∴ The rocket will reach its maximum height after 6.13 seconds
There is another solution you can find the vertex point (h , k) of the graph of the quadratic equation y = ax² + bx + c, where h =
and k is the value of y at x = h and k is the maximum/minimum value
∵ a = -16 , b = 196
∴ 
∴ h = 6.125
∵ h is the value of x at the maximum height
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
5x^2
6x^3y
2x^3 3xy
^ means the little number above x eg x^3
Answer:
32x - 8
Step-by-step explanation:
A = LW
A = (8x - 2)(4)
A = 32x - 8
Answer:
ANSWER = −6x^5 +9x^4 − 9x^3
Step-by-step explanation:
Let's simplify step-by-step.
(−3x^3) (2x^2 + 3) + 9x^4
Distribute:
=(−3x^3) (2x^2) + (−3x^3) (3) + 9x^4
=−6x^5 + − 9x^3 + 9x^4
Answer:
= −6x^5 +9x^4 − 9x^3